
THÈSE

Pour obtenir le diplôme de doctorat

Spécialité Informatique

Préparée au sein de l’ INSA Rouen Normandie

Probabilistic Exponential Smoothing

for Explainable AI
in the Supply Chain domain

Présentée et soutenue par

ANTONIO CIFONELLI

Thèse soutenue publiquement le 22 12, 2023
devant le jury composé de

M. Massih-Reza AMINI, Professor at Université Grenoble, Alpes Rapporteur

M.me Mireille BATTON-HUBERT, Professor at École des Mines de Saint-Étienne Rapporteur

M.me Samia AINOUZ, Professor at INSA Rouen, Normandie Examiner

M. Stéphane CANU, Professor at INSA-Rouen, Normandie Thesis director

M.me Sylvie LE HÉGARAT-MASCLE, Professor at Paris-Saclay Examiner

M. Joannes VERMOREL, CEO of Lokad Invited member

Thèse dirigée par STÉPHANE CANU (Laboratoire d’Informatique, du Traitement de
l’Information et des Systèmes)

ii

Résumé en Français

Le rôle clé que l’IA pourrait jouer dans l’amélioration des activités commerciales est

connu depuis longtemps (au moins depuis 2017), mais le processus de pénétration

de cette nouvelle technologie a rencontrzécertains freins au sein des entreprises, en

particulier, les coûts de mise œuvre. Les entreprises restent attachées à leurs an-

ciens systèmes en raison de l’énergie et de l’argent nécessaires pour les remplacer.

En moyenne, 2.8 ans sont nécessaires depuis la sélection du fournisseur jusqu’au

déploiement complet d’une nouvelle solution. Trois points fondamentaux doivent

être pris en compte lors du développement d’un nouveau modèle. Le Désaligne-

ment des attentes, le besoin de compréhension et d’explications et les problèmes

de performance et de fiabilité. Dans le cas de modèles traitant des données de la

chaîne d’approvisionnement (supply chain), cinq questions spécifiques viennent

s’ajouter aux précédentes:

• La gestion des incertitudes. La précision n’est pas tout. Les décideurs cherchent

un moyen de minimiser le risque associé à chaque décision qu’ils doivent

prendre en présence d’incertitude. Obtenir une prévision exacte est un rêve;

obtenir une prévision assez précise et en calculer les limites est réaliste et ju-

dicieux.

• Le traitement des données entières et positives. La plupart des articles vendus

dans le commerce de détail ne peuvent pas être vendus en sous-unités, par

exemple, une boîte de conserve, une pièce de rechange ou un t-shirt. Cet

aspect simple de la vente se traduit par une contrainte qui doit être satisfaite

par le résultat de toute méthode ou modèle donné : le résultat doit être un

entier positif.

• L’observabilité. La demande du client ne peut pas être mesurée directement,

seules les ventes peuvent être enregistrées et servir de proxy pour la demande.

• La rareté et la parcimonie. Les ventes sont une quantité discontinue : un pro-

duit peut bien se vendre pendant une semaine, puis plus du tout la semaine

suivante. En enregistrant les ventes par jour, une année entiére est condensée

en seulement 365 (ou 366) points. De plus, une grande partie d’entre elles sera

à zéro.

• L’optimisation juste-à-temps. La prévision est une fonction clé, mais elle n’est

qu’un élément d’une chaîne de traitements soutenant la prise de décision. Le

temps est une ressource précieuse qui ne peut pas être consacrée entièrement

à une seule fonction. Le processus de décision et les adaptations associées

doivent donc être effectuées dans un temps limité et d’une manière suffisam-

ment flexible pour pouvoir être interrompu et relancé en cas de besoin afin

d’incorporer des événements inattendus ou des ajustements nécessaires.

Cette thèse s’insère dans ce contexte et est le résultat du travail effectué au cœur de

Lokad, une société parisienne de logiciels visant à combler le fossé entre la tech-

nologie et la chaîne d’approvisionnement. La recherche doctorale a été financée

par Lokad en collaboration avec l’ANRT dans le cadre d’un contrat CIFRE. Le travail

proposé a l’ambition d’être un bon compromis entre les nouvelles technologies et

les attentes des entreprises, en abordant les divers aspects précédemment présen-

tés.

Nous avons commencé à effectuer des prévisions en utilisant des méthodes de base

- la famille des lissages exponentiels - qui sont faciles à mettre en œuvre et extrême-

ment rapides à exécuter. Étant largement utilisés dans l’industrie, elles ont déjà

gagné la confiance des utilisateurs. De plus, elles sont faciles à comprendre et à ex-

pliquer à un public non averti. En exploitant des techniques plus avancées relevant

du domaine de l’IA, certaines des limites des modèles utilisés peuvent être surmon-

tées. L’apprentissage par transfert s’est avéré être une approche pertinente pour

extrapoler des informations utiles dans le cas où le nombre de données disponibles

était très limité. L’hypothèse gaussienne commune ne convenant pas aux données

de vente discrètes, nous avons proposé d’utiliser un modèle associé à une loi de

Poisson, une binomiale négative qui correspond mieux à la nature des phénomènes

que nous cherchons à modéliser et à prévoir. Nous avons aussi proposé de traiter

l’incertitude par la simulation. À travers des simulations de Monte Carlo, un cer-

tain nombre de scénarios sont générés, échantillonnés et modélisés par dans une

distribution. À partir de cette dernière, des intervalles de confiance de taille dif-

iv

férentes et adaptés peuvent être déduits. Sur des données réelles de l’entreprise,

nous avons comparé notre approche avec les méthodes de l’état de l’art comme le

modèle Deep AutoRegressive (DeepAR), le modèle Deep State Space (DeepSSMs)

et le modèle Neural Basis Expansion Analysis (N-Beats). Nous en avons déduit un

nouveau modèle conçu à partir de la méthode Holt-Winter. Ces modèles ont été

mis en œuvre dans le “work flow” de l’entreprise Lokad.

Mots clés: Apprentissage par Transfert, Différentiation Automatique, Lissages Exponentiels,

Méthod Holt-Winter, Programmation Différentiable, Prévision de la Demande, Prévision

des Séries Temporelles, Prévision Probabiliste, Réseau Long Short-Term Memory (LSTM

), Simulation de Monte Carlo.

v

vi

Résumé en Anglais

The key role that AI could play in improving business operations has been known for a long

time (at least since 2017), but the penetration process of this new technology has encoun-

tered certain obstacles within companies, in particular, implementation costs. Companies

remain attached to their old systems because of the energy and money required to replace

them. On average, it takes 2.8 years from supplier selection to full deployment of a new so-

lution. There are three fundamental points to consider when developing a new model. Mis-

alignment of expectations, the need for understanding and explanation, and performance

and reliability issues. In the case of models dealing with supply chain data, there are five

additionally specific issues:

• Managing uncertainty. Precision is not everything. Decision-makers are looking for

a way to minimise the risk associated with each decision they have to make in the

presence of uncertainty. Obtaining an exact forecast is a advantageous; obtaining a

fairly accurate forecast and calculating its limits is realistic and appropriate.

• Handling integer and positive data. Most items sold in retail cannot be sold in sub-

units, for example, a can of food, a spare part or a t-shirt. This simple aspect of selling,

results in a constraint that must be satisfied by the result of any given method or

model: the result must be a positive integer.

• Observability. Customer demand cannot be measured directly, only sales can be

recorded and used as a proxy for demand.

• Scarcity and parsimony. Sales are a discontinuous quantity: a product may sell well

one week, then not at all the next. By recording sales by day, an entire year is con-

densed into just 365 (or 366) points. What’s more, a large proportion of them will be

zero.

• Just-in-time optimisation. Forecasting is a key function, but it is only one element in

a chain of processes supporting decision-making. Time is a precious resource that

cannot be devoted entirely to a single function. The decision-making process and

associated adaptations must therefore be carried out within a limited time frame, and

in a sufficiently flexible manner to be able to be interrupted and restarted if necessary

in order to incorporate unexpected events or necessary adjustments.

This thesis fits into this context and is the result of the work carried out at the heart of Lokad,

a Paris-based software company aiming to bridge the gap between technology and the sup-

ply chain. The doctoral research was funded by Lokad in collaboration with the ANRT under

a CIFRE contract. The proposed work aims to be a good compromise between new tech-

nologies and business expectations, addressing the various aspects presented above.

We have started forecasting using basic methods - the exponential smoothing family - which

are easy to implement and extremely fast to run. As they are widely used in the industry,

they have already won the confidence of users. What’s more, they are easy to understand

and explain to an unlettered audience. By exploiting more advanced AI techniques, some of

the limitations of the models used can be overcome. Cross-learning proved to be a relevant

approach for extrapolating useful information when the number of available data was very

limited. Since the common Gaussian assumption is not suitable for discrete sales data, we

proposed using a model associated with either a Poisson distribution or a Negative Binomial

one, which better corresponds to the nature of the phenomena we are seeking to model and

predict. We also proposed using simulation to deal with uncertainty. Using Monte Carlo

simulations, a number of scenarios are generated, sampled and modelled using a distri-

bution. From this distribution, confidence intervals of different and adapted sizes can be

deduced. Using real company data, we compared our approach with state-of-the-art meth-

ods such as the Deep Auto-Regressive (DeepAR) model, the Deep State Space (DeepSSMs)

model and the Neural Basis Expansion Analysis (N-Beats) model. We deduced a new model

based on the Holt-Winter method. These models were implemented in Lokad’s work flow.

Keywords: Automatic Differentiation, Cross-learning, Demand Forecasting, Differentiable

Programming, Exponential Smoothing, Holt-Winter method, Long Short-Term Memory net-

work (LSTM), Monte Carlo Simulation, Probabilistic Forecasting, Time series Forecasting.

viii

Contents

Contents ix

1 Introduction 3

1.1 AI & Supply Chain Management . 8

1.2 Structure of the manuscript . 12

1.3 Summary . 13

2 Time series analysis and forecasting 17

2.1 Time series analysis . 18

2.1.1 Structural time series . 19

2.1.2 Differencing . 20

2.2 Time series forecasting . 21

2.2.1 Co-variates or predictors . 22

2.2.2 Metrics and loss functions . 23

2.2.3 Problem Statement . 24

2.3 Shallow solutions . 26

2.3.1 Naïve method . 26

2.3.2 Exponential smoothing and its variants . 27

2.3.3 AR(I)MA and its variants . 31

2.3.4 State Space Models . 33

2.4 Neural Architectures . 35

2.5 Summary . 42

3 Demand forecasting 45

3.1 Introduction . 46

3.1.1 Hierarchical and cross-sectional . 46

3.1.2 Count time series . 47

3.1.3 Erratic, Lumpy, Smooth & Intermittent series 51

3.1.4 Bullwhip effect . 54

ix

CONTENTS

3.1.5 Makridakis competitions . 54

3.1.6 Metrics . 57

3.2 Datasets . 60

3.2.1 The Part dataset . 60

3.2.2 The M4 competition dataset . 62

3.3 State-of-the-Art . 63

3.3.1 Deep auto-regressive recurrent networks 64

3.3.2 Deep state space models . 66

3.3.3 Neural basis expansion analysis . 70

3.4 Research overview . 74

3.5 At Lokad . 75

3.5.1 Envision . 75

3.5.2 The forecasting engine evolution . 76

3.6 Summary . 78

4 Automatic Differentiation & Differentiable Programming 81

4.1 Introduction . 82

4.2 Forward Mode . 86

4.2.1 Dual Numbers . 86

4.3 Reverse Mode . 88

4.4 Automatic Differentiation . 90

4.4.1 On the computational subject . 90

4.4.2 On the memory management . 91

4.4.3 In Machine Learning frameworks . 92

4.4.4 Differentiable Programming . 95

4.5 At Lokad . 96

4.6 Summary . 97

5 Probabilistic exponential smoothing for demand forecasting 99

5.1 Introduction . 99

5.2 An LSTM analogy . 100

5.2.1 Context & state vectors . 101

5.2.2 Operators . 103

5.3 Model . 106

5.3.1 Parameters, encoding & initialization . 107

5.3.2 Multiple seasonality . 109

5.3.3 Shared seasonality . 109

5.3.4 Likelihood model . 110

x

CONTENTS

5.3.5 Training . 111

5.3.6 Prediction . 112

5.4 Results . 114

6 Conclusions 121

6.1 Future perspectives . 123

List of Figures XI

List of Tables XIII

1

CONTENTS

2

Chapter 1

Introduction

Contents

1.1 AI & Supply Chain Management . 8

1.2 Structure of the manuscript . 12

1.3 Summary . 13

Time series are defined as a collection of data points for which the time order matter. They

are a useful tool to capture, analyze and visualize disparate temporal phenomena, like the

heartbeat recorded by our smart watch or fitness tracker over a day, the timeline on our

social medias, the electricity demand of a household or the fluctuations of a bank account

just to name a few. Virtually they are employed in each and every aspect of our life, a snap-

shot of our activities or events we are interested into. Sometimes - not to say always - the

evolution of a time series is affected by numerous factors, which can either be time series

themselves or not. For example our heartbeat can change in response to physical efforts or

because we are asleep; over winter months the temperature goes down, we consume more

energy to heat our houses and higher fluctuations in our bank accounts are appreciable.

The interesting and central role played by time series had aroused curiosity of researchers

and practitioners over decades, and still continues to do so.

Since the very beginning of rigorous time series analysis, it was clear the possibility to extract

valuable insights and or patterns from the data, which in turn could bring forward the time

series evolution. By now it is common feeling to identify three foundation patterns within

a time series: a monotonic upward or downward movement, called trend; one or more re-

peating patterns at dissimilar frequencies, these take the name of seasonality; a low pace

3

CHAPTER 1. INTRODUCTION

seasonal variation which is peculiar to time series spanning a wide time range - decades or

event centuries - which is known as cycle. Occasionally these components are easily iden-

tified, more often their presence and the interactions with other constituents are elusive.

Take the example of a rental bike service located in Seoul, presented in Fig. (1.1). Rental

bikes, as well as electric scooters, are being introduced in many major cities - as one of the

means to enhance sustainable mobility while diminish the number of circulating cars - to

then extend to radial areas. The figure depicts in gray the daily demand - Fig. (1.1a) - which

had been obtained aggregating the raw hourly demand. Looking at the chart an erratic day-

to-day evolution is recognizable, with some drops to zero when the rental service was in

maintenance. A closer inspection roughly spots a trend, being the red line in Fig. (1.1a)

a crude initial approximation of it. It starts to climb as soon as the Spring approaches and

people are more willing to pedal, reaches its peak in Summer and comes back in the winter

months when the temperature’s drop discourages cyclists. No seasonality seem manifest at

this level of detail, but they are there. A bit more work is required to extrapolate the changes,

for instance aggregating the data either by the hour for each week or by the hour for each

month (as actually shown in Fig. (1.1b)). The seasonality emerged from the data and we

can already derive some intuitions. The shape of the seasonal changes is nearly identical

over the year with two clear peaks, one around 9 am and one roughly at 19 pm. These two

peaks correspond to the start and the end of the work day. Finally it wanes overnight. The

change in magnitude catches the eye, but we have to note that it is not amended by the

trend influence.

Human activities at large are particularly rich in (hidden) patterns and the ability to auto-

matically discover them with limited experience - or no experience at all - is crucial. The

first methods appeared in the early 1900s and were all centered around smoothing tech-

niques. Moving Averages (MA) and Exponential Smoothing (ES) were among these first

trials; they were essential and not suitable for time series with seasonality yet. In the 1970s

Autoregressive Moving Average (ARMA) models, and their Integrated version (ARIMA),

bridged the gap. Later all these methods and models had been gathered together under

the universal State Space Models (SSMs) class. Over decades the time series analysis tool-

box had been filled with numerous data processing techniques and new models, last but

not least Machine Learning models. We all got used to words like Machine Learning, Deep

Learning and Artificial Intelligence (AI) over the last few years, and in the last months in

particular thanks to the commercialization of services like Chat-GPT. Models belonging to

the AI’s sphere of influence proved to be effective in various fields, from vision and natu-

ral language processing to autonomous driving and drug discovery. However Exponential

Smoothing and AR(I)MA represented and still represent the standard de facto in industry

and business applications when it comes to time series analysis. The discrepancy has been

4

CHAPTER 1. INTRODUCTION

01
D
ec
20
17

20
Ja
n
20
18

11
M
ar
20
18

30
A
pr
20
18

19
Ju
n
20
18

08
A
ug
20
18

27
Se
p
20
18

16
N
ov
20
18

0

10

20

30

Time

B
ik
e
C
ou

n
t
(K

)
Rented
Trend

(a)

Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

0

1

2

5 1321 5 1321 5 1321 5 1321 5 1321 5 1321 5 1321 5 1321 5 1321 5 1321 5 1321 5 1321

Hour

A
v
g
B
ik
e
C
ou

n
t
(K

)

(b)

Figure 1.1: Seoul rental bike data. (1.1a) The raw daily bike count - obtained aggregating
the raw hourly demand - is shown together with a rough estimation of its trend (red line
). (1.1b) Aggregating the data by the hour for each month - for visualization sake - a sea-
sonal profile is clearly visible; the trend effect has not been removed. Source data available
at [Hol].

5

CHAPTER 1. INTRODUCTION

the subject up to this time for studies and reports, since the first years of the 2000s. The dig-

italisation process in fact guided to a steady and exponential data proliferation, multiplying

not only the information sources but also the affecting factors. A technical shift within com-

panies was expected, but not observed. The trend started to change only recently.

Business wise the contradiction can be explained with the cost implicated with a technical

reorganization. Companies hang to older systems because of the time and money needed

to replace them. As noted by McKinsey & Company in one of their 2022 reports - [McKd] -

companies take 2.8 years on average from vendor selection to a complete roll-out of a new

solution. Pharmaceutical companies can take up to six years to complete the process. The

capital investment, as the time one, is dependent on the company’s complexity; the phar-

maceutical industry spends from AC55 million to AC110 million for a new solution, while less

complex industries, like consumer-packaged goods, invest about AC15 million. With such

numbers involved, a failure is a pondered risk to minimize. Nevertheless sixty percent of

the time the implementation of a new solution fails due to missed deadlines, over budget

or disappointing outcomes. Finally, switching to a new system is not only a matter of tech-

nologies. Companies need to prepare the staff to use the new system, ensuring that they are

engaged with it and the possible new working flow, while running in parallel the older one

to not shutdown operations.

Back in the 2017 companies recognized the key role AI could play, but were unsure about

what to expect and how it could fit within their business model. At the time only the 23 per-

cent of the respondents to the MITSloan Management Review’s survey [RKGR17] claim to

had incorporated AI-related techniques in their processes; among adopters, only five per-

cent of them asserted to use AI extensively. An additional 23 percent was using AI only in pi-

lot projects, for a total of 4̃6 percent of asked businesses being proactive. Finally a 22 percent

of the participants were not using AI and didn’t have a plan to incorporate it in their busi-

ness. Customer-facing activities and service operations optimization in general had been

recognized as one of the main business unit in which AI could make the difference. A cou-

ple o years after the trend is confirmed by the report wrote by McKinsey & Company [McKb].

Adoption has more than doubled since 2017, but plateaued between 50 and 60 percent for

the past few years. We imagine that: a) at least a portion of the pilot projects detected in the

2017 reached the production phase; b) in a dynamic and healthy economic companies are

established, grow and die, generating a turnover between adopters and skeptics about AI.

Yet a great percentage of respondents are not using or are not interested at all in AI’s capabil-

ities. Looking at the top use cases the trend has remained quite stable too. With reference to

the 2017, marketing and sales have came up beside service operations optimization, the lat-

ter being still at the first place of the list. Their asset position could only be strengthened by

6

CHAPTER 1. INTRODUCTION

the breakout of Generative AIs [McKc]. This should not be a surprise as these kind of busi-

ness functions do not involve - most of the time - a human intervention and are supportive

to other decision making units.

Makridakis et al. [MSA18b] questioned themselves about the disparity between AI in re-

search and industry since 2000. Prof. Makridakis is the father of a series of competitions,

named after him (3.1.5), which are focused on encouraging the adoption of new methods

and models putting in contact practitioners and researchers. Echoing professor’s words

[...] we hope that those in the field of AI and ML will accept the empirical find-

ings and work to improve the forecasting accuracy of their methods.

A problem with the academic ML forecasting literature is that the majority of

published studies provide forecasts and claim satisfactory accuracies without

comparing them with simple statistical methods or even naïve benchmarks.

What Prof. Makridakis criticizes - and tries to exemplify in his competitions - is the lack of a

fundamental question when it comes to ML research: is this feasible in practice? This is not

a trivial question and can be articulated in 3 main sub-problems:

Expectation misalignment Accuracy is not everything when it comes to business judge-

ment, each and every business function can require its own Key Performance Indicators

(KPIs) - which would in general diverge from the common metrics adopted in re-

search - capturing a specific angle of the company. When KPIs are not aligned a belief

over the goodness and value of a new solution is hardly constructed.

Need of explainable results Core business functions are not left completely automated.

The model could provide and initial solution for the problem at hand, based on more

or less advanced analytics; an expert of the field will then review and adapt the pro-

posed solution to fit the company requirements or those of other correlated activi-

ties. The direct implication is two-fold: the answer proposed by the model needs to

be correct, not only in the accuracy sense of the term but also from a business per-

spective; the internal model’s process has to be accountable and explainable also to

non-technical public. The latter statement is the definition of a “white-box” model.

In contrast state-of-the-art AI models act as a “black-box”. Information are fed to the

model, which elaborates them and emits a result; how the information are distilled

into the final answer cannot be clarified or need advanced techniques to retrace the

inference process. Models like LIME [RSG16] and SHAP [LL17] had been developed

toward this end; together with other models and methods make up the Explainable-

AI branch. Yet their application requires a higher level of skill set and can be fooled,

producing misleading interpretations, as illustrated by Slack et al. [SHJ+20].

7

CHAPTER 1. INTRODUCTION

Lack of trustworthiness This facet is the straight conclusion of the previous two instances.

In our opinion it can also arise from a workforce transformation inertia. In the last

2022 report by McKinsey & Company [McKb] underlined a tech talent shortage. In

response to hiring challenge the most popular strategy, among all respondents, is

reskilling existing employees. Nearly half of the respondents are doing so. Experi-

enced employees could own a set of preferred tools to be implemented in different

scenarios; a clear advantage of the new solution over the set of preferences - or at

least one of them - is a strong argument to ease the transition, differently the comfort

of a well-known and frequently applied solution will be preferred.

1.1 AI & Supply Chain Management

In all the consulted reports [RKGR17, McKa, McKd, McKb, McKc] supply chain manage-

ment is always ranked in the lowest positions among functions which can be improved by

AI. Unequivocally there could be a revenue increase in improving this core function, but

there is still friction against the modernization. Ninety percent of the supply-chain execu-

tives declared to expect an overhaul of the planning system in the next five years; more or

less the same percentage claimed a similar objective five years before. As shown in Fig. 1.2

close to three-quarter of supply-chain functions rely on simplest method like spreadsheets.

In addition more than half use SAP Advanced Planning and Optimization (APO), an an-

tiquated supply-chain planning application introduced back in the 1998 and which will be

discounted in 2027.

Figure 1.2: Courtesy of McKinsey & Company [McKd]. Spreadsheets are still the preferred
method in industry to accomplish planning tasks.

What has already been discussed in the previous section is still sound - and even more pro-

8

CHAPTER 1. INTRODUCTION

nounced - for the supply-chain case. Additionally there are other concerns to take into ac-

count

Embrace uncertainty Again, accuracy is not everything. Decision makers seek a way to

minimize the risk associated with each and every decision they have to make. Un-

certainty is part of the undertaking. A simple yet concrete example is the supplier’s

lead time. On average a supplier will ship the order in time, no main disruptions will

be encountered on the way and the client will receive its goods as expected. Lead

times nevertheless are not deterministic, actually we have an array of possibilities

and each will have a different impact on the business activities. Getting a forecast

right is advantageous; getting a forecast accurate enough and showing its limitation

is appropriate.

Dealing with integer and positive data In Fig. (1.3) 52 weeks of total sales and average

price of a popular beer brand, 18-packs carton size, are shown. As it is not possible

to exchange any given fraction of a pack, we would record only integer sales values.

Someone could argue that we could pick a single can from a pack, that would rep-

resent a fraction of the pack (1/18). Even if logically it makes sense, from a business

perspective it is incorrect. Inside the company’s catalog each item is associated with

an unambiguous identifier, the Stock K eeping Unit (SKU). Different goods, as an

18-pack and a single can, are linked to distinct SKUs. Hence the sale of a single can

will be recorded for its SKU, should the can comes from either a shelf or an opened

pack of 18 cans. This uncomplicated selling aspect translates to a constraint which

has to be satisfied by the outcome of any given method or model.

Observability Sales are the focal point of Supply Chain Management and are the main

quantity analysed to accomplish several tasks, including demand forecasting. Though

they are not the quantity of interested, customer demand is. If company could record

a customer demand they would prefer to do that (recall the case of rental bike in Fig.

(1.1)). When customer demand is a non-observable quantity, sales are the second

best option. Generally speaking sales act as a proxy to customer demand; in other

words there is no mean by which we can record an unsatisfied demand.

Scarceness Look at a second example in Fig. (1.4). It illustrates the monthly sales of an

auto spare part. Fifty one data points summarise 4 complete years (and a couple of

months) and 27 of them - nearly the 53 percent - are zero.

Just-in-Time optimization Enterprises have different budgets and have to allocate a por-

tion of it to each and every of their functions. Planning has a cost. Computational

resources have a cost. Human resources have a cost. The time taken by a complex

9

CHAPTER 1. INTRODUCTION

model to train and generate results would raise the pile of expenses and could be

put aside in favour of less complex - maybe even less accurate - systems which will

deliver (comprehensible) results in less time. As a consequence of the field’s uncer-

tainty, the optimization step has to be as short as possible - data is already old the

next working day - and as flexible as possible to be interrupted and re-launched to

incorporate possible unexpected events or adjustments.

0 20 40
0

200

400

600

800

Week

U
n
it
s

14

16

18

20

0 20 40

Week

5

6

7

·10−2

U
S
D

Sales
Price

Price−1

Figure 1.3: Real data showing 52 weeks of average-price and total-sales records of a popular
beer brand 18-packs carton size (left). In this case it is easy to see a correlation between
the price change and the units sold, emphasized in the right figure. Source data available
at [Nau].

The divergence observed by Prof. Makridakis becomes obvious when inspecting the in-

house research conducted by companies. Except for giant companies like Amazon, the rest

of the businesses are consecrating their efforts to make simple models - most of the time

already in use in production - scalable and flexible. For a more wide analysis of this phe-

nomenon see Sec. 3.4.

This thesis is inserted in this context and is the result of the work done in the midst of

Lokad, Parisian software company aiming at bridging technology and Supply Chain. The

PhD research had been funded by Lokad in collaboration with the Association Nationale

Recherche Technologie (ANRT) under a CIFRE contract. The proposed work has the ambi-

tion to be a good trade-off between new technologies and business expectations, addressing

the various aspects previously introduced.

Trustworthiness and explainable results We started from the methods included in the Ex-

ponential Smoothing family. These methods are easy to implement and extremely

fast in execution, even on common commercial hardware. Being widely used and

accepted in the industry, they are a good candidate as starting point to promote the

10

CHAPTER 1. INTRODUCTION

Ja
n
19
98

A
ug
19
98

M
ar
19
99

Se
p
19
99

A
pr
20
00

O
ct
20
00

M
ay
20
01

D
ec
20
01

0

2

4

6

8

10

12

Time

U
n
it
s

Figure 1.4: Sparse demand of the automotive spare part marked with Id 10055165 in the orig-
inal dataset. The data has been extrapolated from the dataset carparts available at [HKOS].
The dataset is released as supplementary material of [HKOS08] and has been pre-processed
as described in Snyder et al. [SOB12].

11

CHAPTER 1. INTRODUCTION

transition. Moreover they are easy to grasp and easily explainable. Nonetheless their

limitations are well known, for instance either lack of seasonality or fixed seasonality,

inability in shaping multiple seasonality.

Scarceness Scarcity plays against a stable and effective training process. Cross-learning can

ease the difficulties and support pattern extrapolation even in a scarcity of series-wise

data.

Integer and positive constraints The most common assumption done in practice is a Gaus-

sian fit for the data, i.e. data follow a bell-shaped distribution around a mean (nearly

all the time set at zero). For integer data - with a great percentage of zeroes - the

assumption fells. The integer and positive constraints are addressed replacing the

Gaussian assumption with either a Poisson or a Negative Binomial one.

Embrace uncertainty Simulating several scenarios, the impact of various factors can be

approximated. The more scenarios are tested, the more we are prepared for the dif-

ferent outcomes (up to an irreducible degree of unexpected occurrences). Monte

Carlo simulation adapts really well to these conditions. A number of scenarios are

generated, sampled and summarised into a distribution. From the latter disparate

confidence intervals can be derived.

We compare against both well known standard methods and State-of-the-Art (SotA)

models on a collection of datasets sampled from the literature, public forecasting competi-

tions and in-house data lake.

1.2 Structure of the manuscript

The rest of the dissertation will be organised as follow.

Chapter 2 presents the literature starting from the most common methods and models -

also known as shallow models - (Sec. 2.3) and some more modern architectures - Sec. 2.4 -

like Neural Networks (NNs).

Chapter 3 introduces demand time series and demand forecasting peculiarities. The history

of Makridakis Competitions - Sec 3.1.5 - will be of use as an evolutionary timeline of time

series forecasting, it will serve a double scope: give an idea of how the landscape of this core

task has evolved over time; stress how arduous is for new models to penetrate the industry

tech stack. The same chapter holds sections related to both the datasets included in the

study and the up-to-date SotA designs. Deep AutoRegressive model (DeepAR) [SFGJ19],

Deep State Space Models (DeepSSMs) [RSG+18] - both from Amazon - and the Neural

Basis Expansion Analysis model (N-Beats) [ODPT21] are there presented. Finally a review

12

CHAPTER 1. INTRODUCTION

of the French industry researches highlights the exploration of the time series forecasting

area, in contrast with the literature introduced previously.

Chapter 4 focuses on Differentiable Programming, the new paradigm shift which is inter-

esting the Machine Learning community, and Automatic Differentiation (AD) which had

been the fuse for this change; Sec. 4.5 briefly discuss how this new paradigm had already

been incorporated into the Lokad’s work flow.

Chapter 5 introduces the new model conceived starting from Holt-Winter method.

1.3 Summary

The key role AI could play in enhancing business activities had been recognized since 2017 [RKGR17],

yet the penetration process of this new technology encountered a certain degree of inertia

within companies from different backgrounds. Costs are the main obstacles. Companies

hang to older systems because of the time and money needed to replace them. On aver-

age 2.8 years are required from vendor selection to a complete roll-out of the new solution.

The capital investment, au par of the time required, is dependent on the company’s com-

plexity; the magnitude ranges from a dozen of million to more than a hundred. With such

numbers involved, a failure is a pondered risk to minimize. Nevertheless sixty percent of

the time the implementation of a new solution fails due to missed deadlines, over budget or

disappointing outcomes. Finally, switching to a new solution is not only a matter of tech-

nologies. Companies need to prepare the staff to use the new system, ensuring that they are

engaged with it and the possible new working flow, while running in parallel the older one

to not shutdown operations. The human component can not be taken out of the equation;

each professional would rely on his or her expertise - and a set of preferred tools - to solve a

problem. Three focal points should be taken into account when developing a new model:

Expectation misalignment Accuracy is not everything. Each and every business re-

quire different KPIs which would in general diverge from the common metrics adopted

in research, capturing a specific angle of the company. When KPIs are not aligned a

belief over the goodness and value of a new solution is hardly constructed.

Need for explainable results While the main research groups are focusing their ac-

tivities on ever growing complex models, moving towards a “black-box” approach,

businesses prefer to stand with “white-box” models which are more human friendly

and transparent for the decision makers. To achieve a certain grade of transparency,

multiple advanced techniques have to be applied.

Lack of trustworthiness Straight conclusion of the previous two instances, it is also

bounded to the human factor aforementioned.

13

CHAPTER 1. INTRODUCTION

If the model has to deal with supply chain data, the following points add to the previous

ones:

Embrace uncertainty Again, accuracy is not everything. Decision makers seek a way

to minimize the risk associated with each and every decision they have to make. Un-

certainty is part of the undertaking. Getting a forecast right is advantageous; getting

a forecast accurate enough and showing its limitation is appropriate.

Dealing with integer and positive data Most of the articles sold in retail can not be

sold in sub-units, e.g. a can, a spare part or a t-shirt. This uncomplicated selling

aspect translates to a constraint which has to be satisfied by the outcome of any given

method or model: the result has to be a positive integer.

Observability Customer’s demand can not be measured directly, only sales can be

recorded and act as a proxy for the demand.

Scarceness Sales however are a discontinuous quantity: a product can sell well over a

week and than not at all for the next month. Recording sales per day, an entire year is

condensed in only 365 (366) data points. In addition, a great portion of them will be

at zero.

Just-in-Time optimization Forecasting is a core function, but it belongs to a more gen-

eral chain of sub-processes supporting decision making. Time is a valuable resource

to pace and can not be consecrated completely to a single function. The training pro-

cess therefore has to be limited in time and flexible enough to be interrupted and

re-launched to incorporate unexpected events or mandatory adjustments.

This thesis is inserted in this context and is the result of the work done in the midst of Lokad,

Parisian software company aiming at bridging technology and Supply Chain. The PhD re-

search had been funded by Lokad in collaboration with the ANRT under a CIFRE contract.

The proposed work has the ambition to be a good trade-off between new technologies and

business expectations, addressing the various aspects previously introduced. We started

from basic methods - the Exponential Smoothing family - which are easy to implement and

extremely fast in execution. Being widely used in the industry, they already won practi-

tioner’s trust. Moreover they are easy to grasp by and easily explainable to a non-technical

audience. Exploiting more advanced techniques belonging to the ML field, some of the lim-

itations of the employed models can be overcame. Cross-learning had been proven a valid

approach to extrapolate useful information even in a scarcity of series-wise data case. The

common Gaussian assumption would not hold for sales data, either a Poisson one or a Neg-

ative Binomial expectation would fit better the situation. Finally uncertainty is dealt with

14

CHAPTER 1. INTRODUCTION

simulation. Through Monte Carlo simulations a number of scenarios are generated, sam-

pled and summarised into a distribution. From the latter disparate confidence intervals can

be derived.

15

CHAPTER 1. INTRODUCTION

16

Chapter 2

Time series analysis and forecasting

Contents

2.1 Time series analysis . 18

2.1.1 Structural time series . 19

2.1.2 Differencing . 20

2.2 Time series forecasting . 21

2.2.1 Co-variates or predictors . 22

2.2.2 Metrics and loss functions . 23

2.2.3 Problem Statement . 24

2.3 Shallow solutions . 26

2.3.1 Naïve method . 26

2.3.2 Exponential smoothing and its variants 27

2.3.3 AR(I)MA and its variants . 31

2.3.4 State Space Models . 33

2.4 Neural Architectures . 35

2.5 Summary . 42

Framing the definition of time series in a mathematical way, we define a time series as a

vector z. Each vector is made by data points - or observations, or dependent variable - zt ,

being t the time step at which each observation is gathered - t = 1,2, . . . -, and their number

define the dimension d of the vector such that z ∈ Rd . A finite collection of i = 1, . . . ,N time

17

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

series constitute a dataset D=
{

zi
t0:T

}N

i=1
. Two general tasks can be ran over a time series or

a dataset.

2.1 Time series analysis

Sometimes called descriptive modelling, time series analysis focuses on understanding time

series in order to develop models able to best describe the observed variables. It responds to

the why behind a time series behaviour, decomposing it into constituent components and

making assumption about the data distribution. It involves knowledge of the application

field, mostly demanding an expert judgement. As a consequence it is prone to cognitive

bias in the decomposition process or in the modelling choices. Given a time series zt0=1:T ={
z1, . . . , zt , . . . , zT

} ∈Rd , it can be checked with regards to several fundamental properties

Univariate & multivariate We say that z1:T is univariate if each and every observation

zt is a scalar, i.e. zt ∈ R. If instead each observation zt is itself a vector made by k scalar

values - hence we should write zt , zt ∈Rk - z1:T ∈Rd×k is said to be multivariate and can be

expressed in a tabular or matrix form.

Regular & irregular If observations
{

z1, . . . , zt , . . . , zT

}
are contiguous, i.e. sampled at a

constant frequency, z1:T is said to be regular. On the contrary if the observations are col-

lected erratically or the frequency changes over time, the time series is an irregular one.

Stationary & non-stationary z1:T can be qualified as stationary if its statistical proper-

ties - i.e. the moments of its generative distribution, such as the meanµ and the varianceσ -

don’t change over time. A clear example is white noise εt , i.e. a time series whose samples are

drawn from a Gaussian distributions. On the other hand z1:T is stated to be non-stationary.

Stationarity is a type of dependence structure and a handy property, indeed if a sequence is

stationary than plenty of results which hold for independent random variables also hold for

the sequence.

Auto-correlation Common also with the name serial correlation, this property refers to

the degree of linear correlation between two successive observations or, in general, between

z1:T and its lagged version, either negative z1−`:T−` or positive

z1+`:T+` where ` is the number of lagging steps. Auto-correlation is defined in the range

[−1,1] where −1 indicates a perfectly negative auto-correlation and 1 a perfectly positive one.

A positive indicator reveals that an increment in the observation is linked to an increase

18

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

in the lagged quantity; in contrast a negative indicator implies that an increment in the

observation is linked to a reduction in the lagged value.

The assessment of these basic characteristics can alleviate the cognitive bias effect leading

to a well aware selection of the methods and models that better adapt to the problem faced.

Nevertheless the advances in modelling techniques pushed increasingly towards a fusion

between time series analysis and time series forecasting, see Sec. 2.2, almost erasing the

boundaries and letting both of them to fall under the name of time series forecasting.

2.1.1 Structural time series

We used Fig. (1.1) to picture trend and seasonality ideas but we were silently introducing

the notion of structural time series (STS), that we will recall in Sec. 2.3.4 talking about State

Space Models. We owe the definition to Prof. A.C. Harvey who introduced it in his book

Forecasting, Structural Time Series Models and the Kalman Filter [Har90] where he describes

an alternative decomposition to represent a time series, not via the underlying data genera-

tion processes but rather through components that could highlight the features of the time

series itself. The components have a comprehensible interpretation, are of interest in them-

selves and can be modelled independently if needed. Over the years it has became a sort of

standard, applied through many different fields.

The traditional constituent of a STS are:

Trend (t): upward or downward movements over time;

Seasonality (s): a repeating pattern at consistent time interavals;

Cycle (c): again an upward or downward variation, but appreciated over a longer time

span than a usual trend, typically over decades or even more;

Error (e): being also called irregular, residual or remainder, as the name suggests this

component embraces everything that can not be explained by the other factors.

Two are the consolidated ways to formulate a model for a STS: an additive model

zt = tt + st + ct +et (2.1)

and a multiplicative one

zt = tt ∗ st ∗ ct ∗et (2.2)

19

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

with the possibility to treat the multiplicative case as an additive one by taking the logarithm

of it. Alternative forms can also arise depending on how each and every component enters

the equation [H+04].

Expecting the error term to follow a given distribution - e.g. a Gaussian with zero mean and

unitary variance, very common choice in practice - a STS can be framed within the State

Space Models scheme.

Seasonality

We would like for a moment to direct the attention over a seasonal property that we had

found to pass nearly unnoticed. Either if we treat an additive seasonality or a multiplicative

one, we expect it to be stationary and repeat itself from one period to the next. Abrupt

changes, especially for additive seasonality, will most likely be incorporated either into the

trend component, the error or both. To ensure that the seasonality is stationary we have to

check that

mg∑
t=1

sg
t =

0 if additive

mg if multiplicative

This basic property is clearly stated in [HA21] but appears to be disdained in a large portion

of the literature reviewed.

2.1.2 Differencing

Structural Time Series are an example of non-stationary time series; as a matter of fact, the

presence of either the trend, or the seasonality or both collide with the definition of sta-

tionarity. Differencing is a way to stabilize the mean of the time series, computing the dif-

ferences between consecutive observations and possibly removing fluctuations. Taking the

series of observations zi
1:T, the first-order differencing is defined as

z ′
t = zt − zt−1; t = 2, . . . ,T. (2.3)

The new time series z′2:T has of course T−1 elements, because it is not possible to compute

the difference for z ′
1. Moreover if z′2:T is now stationary, Eq. (2.3) suggests a model for the

original time series. We can in fact rewrite the equality as et = zt − zt−1 and

zt = zt−1 +et . (2.4)

If et = εt the model is better known with the name of random walk model. The latter is at

the foundation of many methods and models treating non-stationary time series, as we will

20

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

see further ahead.

Occasionally a second-order differencing can be performed over z′2:Ti
if it is not station-

ary. Informally the second-order differencing can be though as a second-order derivative

at discrete-time, giving us a “velocity" indicator. More degree of differencing are of course

possible, but in practice orders greater than two are rarely utilized.

Another type of differencing procedure is seasonal differencing; in a seasonal time series the

correlation is stronger between zt and the previous observation at t −m, where m is the

period of the time series; e.g. m = 12 for monthly data. We rewrite Eq. (2.3) as

z ′
t = zt − zt−m . (2.5)

2.2 Time series forecasting

Time series forecasting is a kind of regression task. In contrast to clustering where one or

multiple classes, picked from a finite set, are assigned to an observation, regression approx-

imates the relationship between the input variables and a continuous dependent variable.

It responds to the how a time series will evolve; once a model has been chosen, with or with-

out having ran an analysis beforehand, we are interested in predicting future observations

with the best margin of approximation. Before starting the extrapolation process - i.e. gen-

erate our predictions - we have to take a step backward and question ourselves about the

forecasting problem we are aiming to solve

Qualitative & quantitative forecasting Qualitative forecasting is the perfect continu-

ation of a time series analysis in the presence of an expert judgment. When prediction can

not be backed up by data, because they are scarce or not present at all, the knowledge of an

expert is a good starting point to guess future outcomes and, for some companies, the solely

trusted way to proceed. The forecast of course will be strongly biased by the personal ex-

perience and beliefs of the specialist. Quantitative forecast conversely is a full data-driven

process. Data-driven means that few or no assumptions are made a priori over the data,

letting data shape the model’s internal representation of the underlying generative process.

Nevertheless these two modalities are often intermingled, having the expert to argue the

outcome of a model in a human-in-the-loop cycle.

One-step-ahead & multi-step forecasting One-step-ahead forecast happens when we

forecast only the next time step of a time series; when instead the prediction horizon h is

21

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

longer we talk about a multi-step forecast. Either for application and planning purpose or

due to limitations in the preferred model, we have situations where we are interested in

predicting only over a short-term period.

Aligned time series In a dataset defined as D=
{

zi
t0:T

}N

i=1
, all the time series start at time

t0 and end at time T. The time series are therefore aligned. If instead either t0, T or both

are series-dependent - i.e t0,i and Ti - the time series are “misaligned". A technique to pass

from a misaligned situation to an aligned one is padding, i.e. pushing a value either at one

or both endpoints such that the total length is equal for all the time series. Zero is frequently

used as padding value, but other common choices are the mean or the median of the time

series. Padding however can have no meaning in some applications. Trimming the history

could be also a solution; t0 and T are chosen such that t̃0 = max
({

t0,1, t0,2, . . . , t0,N

})
and

T̃ = min
({

T1,T2, . . . ,TN

})
. Depending on the problem, there could exist explicit rules whose

application could result in a dataset alignment, filtering out observations or entire time se-

ries.

An always valid but double-edged alternative is to leave the dataset untouched, set t̃0 =
min

({
t0,1, t0,2, . . . , t0,N

})
and T̃ = max

({
T1,T2, . . . ,TN

})
and treat any observation t̃0 < zi

t < t0,i

or Ti < zi
t < T̃ as missing. This adds a data-overhead counting for the extra indexes to mark

missing observations for each and every time series.

Those listed here are of course only example of possible approaches to deal with misalign-

ment in a dataset.

2.2.1 Co-variates or predictors

To predict the future, the most popular and simple time series models use historical infor-

mation embedded in the past values alone, therefore they will be able to extrapolate trend

and seasonal patterns but be completely blind about factors that can affect the outcome.

Co-variates - or predictors, or features - x are additional pieces of information which can

go together with observations to partially explain the data behaviour. They can be global

or series-wise, time-varying or -invariant, known continuously or solely for a limited time

span. Models employing these information are often referenced as explanatory models.

A third opportunity are the dynamic regression models: a combination of time series models

and explanatory ones, where the prediction depends both on the past observed values and

the external information. These models have been called by different names, among them

we recall longitudinal models or transfer function models, also in relation with SSMs.

Either if we are using time series models, explanatory models, or a combination of them,

the relationship between the dependent variables and the predictors will never be perfect.

Therefore it is good practice to integrate in these models an error term that will accept any

22

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

change which can not be accommodated by the model itself. The error term has a funda-

mental relevance in the uncertainty appraisal, defining de facto the spread of the potential

expected values.

2.2.2 Metrics and loss functions

In regard to the model’s performance, most probably we had heard the word “accuracy” as

a general term for both classification and regression tasks. However we can only compute

a real accuracy for classification, where we can state how many classes had been predicted

correctly against the total number of predictions. For regression tasks we better talk about

metrics.

Metric functions - or simply metrics - are used to compute an error score which summarizes

the predictive skills of a model. Depending on the application more than one metric can be

used to assess the fitness of a model to the problem at hand. Often they are confused with

loss functions since some of them - i.e. the differentiable ones - are used interchangeably

as metrics or loss functions. Metrics are used to monitor and assess the performance of a

model and can be either differentiable or not since, in general, they are not involved in the

training process.

Mean Absolute Error (MAE)

The mean absolute error, for a single time series zt0:Ti
and related prediction ẑt0:Ti

, is defined

as

MAE
(
zi

1:Ti
, ẑi

1:Ti

)
=

(∑Ti
t=1

∣∣zt − ẑt

∣∣)
Ti −1

(2.6)

The application of the absolute function avoids positive and negative errors to cancel each

other. Positive and negative are equally weighted under this metric.

A cusp is present when zt − ẑt = 0, hence the metric is not differentiable. Nevertheless it has

been vastly employed in combination with a loss function - i.e. as a regularization term -

due to its robustness to outliers. Minimization of the MAE will lead us to the median of the

data.

Mean Squared Error (MSE)

The mean squared error substitutes the absolute function with a square one, hampering

again the deletion between positive and negative errors. For a single time series zt0:Ti
and

related prediction ẑt0:Ti
MSE is defined as

23

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

MSE
(
zi

1:Ti
, ẑi

1:Ti

)
=

(∑Ti
t=1

(
zt − ẑt

)2
)

Ti −1
(2.7)

Compared to MAE, it is smooth, twice differentiable and penalizes big errors more than

small ones. However, as for MAE, the error’s direction doesn’t play a role in how much the

deviation is penalized. It is associated with an “interpretation complexity" since the com-

puted score lives in the squared scale of the original input. Additionally it is more sensitive

to outliers than MAE.

If the subtended predictive distribution is - or is assumed to be - symmetric, than choosing

either MAE or MSE will lead to the same point forecast since the median and the mean of

the data are equal. We will come back to this in Sec. 3.1.6.

Root Mean Squared Error (RMSE)

Together with MAE and MSE - of which it is the square root - RMSE is a scale-dependent

metric commonly used either as loss function or comparison metric.

RMSE
(
zi

1:Ti
, ẑi

1:Ti

)
=

√√√√∑Ti
t=1

(
zi

t − ẑi
t

)2

Ti −1
(2.8)

The same arguments exposed for the MSE are valid for the RMSE, except for the interpre-

tation. Indeed taking the square root translates again the error back in the original input

scale. For the latter property it has been found suitable for context where the error has a

direct impact on real-life quantities, e.g. a money loss.

Mean absolute error, mean squared error and root mean squared error all belong to the

family of scale dependent errors - i.e. those metrics producing a score over the same scale

as the input data - and can not be applied to assess model’s fitness across multiple time

series.

2.2.3 Problem Statement

Let D =
{

zi
t0,i :Ti

}N

i=1
be a dataset of N time series, where zi

t0,i :Ti
=

{
zi

t0,i
, . . . , zi

t , . . . , zi
Ti

}
with

zi
t ∈R, and

{
xi

t0,i :Ti+h

}N

i=1
a second set of associated co-variates. Let also define with L (z , ẑ)

the loss function of choice. The multi-step ahead time series forecasting can be stated as

24

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

min
∑
N

Ti+h∑
t=Ti+1

L
(
zi

t , ẑi
t

)
where

ẑi
Ti+1:Ti+h = f

(
zi

t0,i :Ti
,xi

t0,i :Ti+h ,et

)
, (2.9)

where the quantities ẑi
Ti+1:Ti+h are to be estimated over the horizon h, given the past ob-

servations zi
t0,i :Ti

and the co-variates xi
t0,i :Ti+h . When h = 1 the multi-step ahead forecasting

problem collapses to the one-step-ahead one. Multi-step and one-step-ahead forecasting

are instances of single-valued forecasts, i.e. we forecast only a single number for each time

step in the future. Another common name is point forecast

Point forecast

It is the most common forecasting exercise, bound tightly to the use of time series forecast-

ing models. Consuming historical values, we need observations zi
t−1, zi

t−2, zi
t−3, . . ., to esti-

mate the next ẑi
t ; to evaluate ẑi

t+1 we have to wait until zi
t is known, and so on and so forth.

We are therefore necessarily proceeding one step at the time; a multi-horizon forecasting -

i.e. generate a forecast for multiple time steps in the future - is still possible, but likely it will

be a broadcasting of the last forecast for which we have actual information. Model’s fitness

is usually assessed choosing one or more metrics, like those introduced in the previous sec-

tion. Prediction intervals can be approximated imposing a Gaussian distribution over the

error.

Probabilistic forecast

Probabilistic forecasting is an extension to the problem stated in Eq. (2.9); rather than emit-

ting a single value, a probability is assigned to each element of a set of plausible values. The

set of probabilities define the probability forecast. However, assigning a probability distri-

bution to each time step could be unfeasible, hence in practice it is preferable to assign a

probability distribution to the horizon of interest. Equation (2.9) is modified accordingly

min
∑
N

Ti+h∑
t=Ti+1

L (zi
t , ẑi

t) where

P
(
ẑi

Ti+1:Ti+h

∣∣∣zi
t0,i :Ti

,xi
t0,i :Ti+h

)
, (2.10)

The first advantage is that we can directly asses the goodness of our model inspecting the

confidence intervals: the narrower a confidence interval is, the more the model has a higher

25

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

confidence over its prediction. Confidence intervals are easily built starting from the esti-

mated probabilistic distribution via quantiles. A quantile function takes the probability of

an event and tells us which is the proximate value of the process for which the probability is

lower or equal to that we asked for. Mathematically

Q(p) = {
z : Pr (Z ≤ z) = p

}
(2.11)

Asking for the Q(0.5) we are requesting the median of the distribution (see also Sec. 3.1.6).

Confidence intervals are the preferred strategy to keep uncertainty under control and drive

policies. If we try to summarize the obtained probability distribution via a single number,

mainly the expected value, we fall back to the point forecast case.

2.3 Shallow solutions

2.3.1 Naïve method

The naïve method is not intended to be used in practice, but mostly as a comparison refer-

ence. It is the optimal forecast when the data follow a random walk model and the forecast

values ẑt :t+h are all set equal to the last observed zt because of the impossibility to predict

future movements

ẑTi+1 = zTi

ẑTi+2 = zTi

...

ẑTi+h = zTi
.

Seasonal naïve The same informal definition applies to the seasonal naïve method, with

the only difference that the foreseen quantity refers to the last season rather than the previ-

ous time step

26

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

ẑTi+1 = zTi+1−m(h+
m+1)

ẑTi+2 = zTi+2−m(h+
m+1)

...

ẑTi+h = zTi+h−m(h+
m+1).

with h+
m = (h −1)mod m.

2.3.2 Exponential smoothing and its variants

Exponential Smoothing (ES) methods originated in the 1950s and even though they were

widely and rapidly adopted in business and industry, they received poor or no attention at

all from the statistician due to lack of well-developed statistics foundation; successive works

filled the void and a conspicuous number of variation to the method have been proposed.

Simple - or Single - Exponential Smoothing (SES) is the basic scheme within the family; it

uses a latent state lt - also called level - and is in general fitted to a singular time series. At

time t the predicted value is found via

lt = αzt−1 + (1−α)lt−1,

ẑt = lt

(2.12)

where the parameterα is the smoothing parameter - or discount factor, or decay. The general

rule of thumb to set the initial values of the scheme is to specify l1 = 0 and l2 = z1. Another

way consists in setting l2 equal to the target of the dynamic process - if known or guessed -

or averaging the first four or five observations.

In contrast with the simple Moving Average (MA) where the past observations are associ-

ated with a fixed weight - thus the impact of each and every past data point on the current

one is identical -, SES applies exponentially decaying weights. The decay rate is controlled

by α. The exponential denomination derives exactly from the decay’s nature of the weights

assigned to older observations, as can be shown substituting recursively the smoothing

equation for lt−1 into that of lt :

27

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

l1 = 0,

l2 = z1

l3 = αz2 + (1−α)l2 = αz2 + (1−α)z1

l4 = αz3 + (1−α)l3 = αz3 + (1−α)αz2 + (1−α)2z1

l5 = αz4 + (1−α)l4 = αz4 + (1−α)αz3 + (1−α)2αz2 + (1−α)3z1

. . .

or more generally

lt = α
t−2∑
i=1

(1−α)i−1zt−i + (1−α)t−2l2 t ≥ 2.

From this unfolding we can see that the weights decrease geometrically and their sum is

unity. It also helps us infer the impact of the smoothing factor: a high value for αmeans that

the last observation receives higher attention than the history; on the other hand the more

α is set to a small value the more the history of observations acquires importance. In the

limiting case of α = 1 we are producing a copy of the input time series, only shifted of one

time step; if instead α= 0 we are relying solely on the first estimation made. Any value of α

in the range [0,1] is therefore admissible, but practically speaking the smoothing parameter

will frequently be chosen as multiple of 0.1 - like [0.1,0.2,0.3, . . . ,0.9] - for convenience.

The title simple or single refers to the assumption that a single value, the level in this case, is

enough to fully characterize the process generating the data.

When the available observations have been processed, the method doesn’t have any fur-

ther information to keep on doing the smoothing operation, hence the only information

which can be forecast is the last computed level. Figure (2.1) reports three different curves

obtained for three distinct values of the smoothing parameter α, together with the sparse

demand already presented in Fig. (1.4). The first 39 data points illustrate the smoothing

mechanism, beginning with the 40-th data point we assume that no more observations are

available, hence we broadcast the last computed level over the remaining 12 time steps as

forecast.

Holt [Hol04] extended the SES with the trend equation; Winters [Win60] built on top, adding

seasonality and producing the so called Holt-Winter (HW) method. Equation (2.13) is an

example of HW method with additive trend and multiplicative seasonality

28

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

Ja
n
19
98

A
ug
19
98

M
ar
19
99

Se
p
19
99

A
pr
20
00

O
ct
20
00

M
ay
20
01

D
ec
20
01

0

2

4

6

8

10

12

Time

U
n
it
s

Qty
α = 0.3
α = 0.5
α = 0.924

Figure 2.1: Sparse demand of the automotive spare part already presented in Fig. (1.4),
together with the forecast obtained through distinct values of the smoothing parameter α.
The first 39 months had been used to picture the smoothing procedure, while the last 12
highlight how the SES produces a flat forecast.

29

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

lt = α
zt−1

st−m
+ (1−α)

(
lt−1 + tt−1

)
,

tt = β
(
lt − lt−1

)+ (
1−β) tt−1,

st = γ
zt−1

lt−1 + tt−1

+ (
1−γ)

st−m

ẑt+h|t =
(
lt +htt

)
st+h−m ,

(2.13)

where β and γ are the smoothing factor associated to the trend and the seasonal pattern

respectively, m is the seasonality period, st is the seasonal factor for the next period and

s
t−m+h+

m
is the seasonal factor from the last period. The first forecast value ẑt+h|t is available

from period t = m +1m.

The basic HW method accommodates for a single seasonality - being it daily, weekly or

monthly - but modern time series can exhibit patterns at different granularity, e.g. week-

of-year, month-of-year, etc.

Training & prediction The estimation of the parameter(s) of a method or a model is

driven by an objective function - or loss function, frequently called just loss - selected by the

practitioner. Different values of the parameter(s) are tested and the one giving the lowest

loss - or the highest one, depending on the loss function nature - over the data is retained as

the best estimation.

Turning to the smoothing parameters α, β and γ, in practice it is typical to constrain them in

the range [0,1], or even more, and test for few values by small increments; e.g. [0.1,0.2, . . . ,0.9].

The restriction imposed over the parameters is a mean to control the influence of distant

past observations over the current forecast, an important aspect of the forecasting task that

will come back over and over in the literature. Due to the restrained search space a naïve

procedure can be put in place, iterating over all the possible parameters combination and

testing for the loss function best outcome. Mean Squared Error - Sec. 2.2.2 - and RMSE -

Sec. 2.2.2 - are two of the most used objective functions, not only for ES methods. When

ES methods are turned into their state space form, they can rely on a well-founded statisti-

cal framework which enables the employment of the likelihood function - or just likelihood,

i.e. a measure of the probability of the observations arising from the model, the most com-

mon one being the Gaussian likelihood - as a loss function and information criterions like

the Akaike’s Information Criterion (AIC) [Aka73] and the Bayesian Information Criterion (

BIC) [Sch78]. The higher the likelihood, the higher the probability that the model is a good

match for the data. Fitting the method to the data is a matter of rolling through the time

steps until the whole training - or conditioning - range is covered.

Once an estimation of the parameters is available, the method can be run again over the

30

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

training range. The last smoothed value is emitted over the whole testing range - or predic-

tion range or horizon - producing a flat outcome; for this reason predictions produced by a

SES method are also referred to as “level". SES alone is not suitable for non-stationary data,

i.e. those data exhibiting additional behaviours like trend and/or seasonality.

Variants Holt [Hol04] proposed a new method which adds to the level equation a sec-

ond SES equation - hence a second smoothing parameter, commonly referenced with the

greek letter β - to account for the trend component; for this reason the method is also called

Double Exponential Smoothing (DES). The input to the trend equation is the difference be-

tween two consecutive levels rather than raw observations; construction of stationary time

series through differencing is a technique found many times in literature both for its imple-

mentation easiness and possible physical interpretation of the differenced quantities.

A couple of years after, Winters [Win60] reworked the Holt’s proposal adding a third expo-

nential smoothing formula - and the relative parameter γ - to deal with seasonality. The

method was named Holt-Winter after the two main works that generated it, but it is also

known as Triple Exponential Smoothing due to the number of equations involved.

Pegels [Peg69] was the first one to recognise two possible natures of trend and seasonality

components: additive - if they impacted linearly the outcome - or multiplicative - if a non-

linearity was introduced -. In 1985 Snyder [Sny85] noticed how ES could be considered as

a particular case of Innovation State Space Model (ISSM), see Sec. 2.3.4 - i.e. a model with

a single source of noise -. The latter remark was a kind of turning point for the consequent

works, aiming at applying the methods or proposing new variants, to the point that it is the

foundation of several works in the recent years. Hyndman et al. [HKSG02, HA21] illustrate a

complete taxonomy of the 15 available methods, generated by the combination of 5 differ-

ent trends - none, additive, multiplicative, additive with drift, multiplicative with drift - and

3 seasonality - none, additive, multiplicative -.

In 2020 Smyl [Smy20] brought back to the forecasting scene ES methods, blending SES and

Neural Networks in a hybrid method that won the M4 competition.

2.3.3 AR(I)MA and its variants

Autoregressive (Integrated) Moving Average models were firstly postulated by Yule [Yul27]

and are based on the assumption that each and every time series arises as the realization

of two stochastic processes: an autoregressive (AR) process, accounting for the linear de-

pendency of the actual observation upon previous (lagged) observations via multiple re-

gression - whose weights are identified by the vector [φ1 . . .φp] plus a constant -; a MA pro-

cess modelling the error term as a smoothed linear combination of past errors - through

the weights [θ1 . . .θq] plus a constant -. Although the original ARMA model had been intro-

31

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

duced by Whittle [Whi51] in 1951 as part of his PhD thesis, these models known their fortune

in 1970 after Box and Jenkins book [BJ76] had been published (the same book in which the

notorious Box-Jenkins transformation is outlined).

The established notation refers to the number of past observations to be employed in the

AR process as p, while the time window over which the error related MA process is com-

puted is identified by q . The extension of the models with the “integrated" portion marks

the entrance in the computer era; the observations are replaced by differences between in-

put values - either consecutive or not, e.g. seasonal differencing -, differences which can be

performed several times and easily handled by algorithms. The number of times the differ-

encing operator is applied - i.e. the degree of the operator - is known as d . The dependency

introduced by the (I) process equips the models with a long-memory - i.e. also observa-

tions far away in time have non negligible effect -, specifically if 0 < d < 0.5 (and the models

are sometimes known as Fractional ARIMA, abbreviated in FARIMA [GJ80]). The parameters

p, q , and d if necessary, are said to constitute the order of an AR(I)MA model and are used

to quickly describe a model, i.e. ARMA(p,q) or ARIMA(p,q,d).

Training & prediction AR(I)MA models request the parameters p and q , and d if re-

quired, to be known beforehand. An initial guess for p and q , which instead produce un-

stable assumptions for d , can be presented by AIC and BIC methods. Once the order of

the model is chosen, the search for the best combination of the parameters [φ1 . . .φp] and

[θ1 . . .θq] involved in the AR and MA processes can be carried forward. The likelihood, again

the most common one being the Gaussian, is the preferred way to train such models via

Maximum Likelihood Estimation (MLE). As for the ES methods, fitting the model is a mat-

ter of rolling over the training range applying the AR and MA processes while looking for the

highest value - hence the highest probability - of the likelihood.

Once the observations in the conditioning range are consumed, the estimated parameters

can be used to produce forecasts. Continuing rolling over the horizon, any missing informa-

tion required by the processes are replaced: future unknown observations are interchanged

with forecasts, future not evaluated errors are set to zero, error from the forecasts become

past errors.

Variants The success of AR(I)MA models is easily grasped looking at [DGH06, Tab. 1,

Sec. 3] which presents a long list of examples of real applications, numerous variants have

been presented over the years among which we recall: the already mentioned FARIMA;

ARARMA [Par82], which achieved the best Mean Absolute Percentage Error (MAPE)1 in

1MAPE
(
z1:T, ẑ1:T

)= 1
T−1

T∑
t=1

∣∣∣∣ (zt−ẑt)
zt

∣∣∣∣
32

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

the first M competition [MAC+82]; Vector ARMA (VARMA) [Que57] and its “integrated" ver-

sion VARIMA, a multivariate generalization of the univariate AR(I)MA; ARMAX i.e. an ARMA

model accepting eXogenous factors.

2.3.4 State Space Models

With the name State Space Models we refer to a family of generative models describing the

relationship between one or more variables, referred to as state, and the observations. SSMs

are completely defined by two equations

transition - or state equation -: defines the dynamic behaviour of the model, i.e how

the model evolves over time from a state to the next, possibly under the effect of an

action;

observation - or measurement equation -: represents the relationship between the

observation and the state;

to each of these equations a source of error - or noise - is added and in the case a singular

source of noise is defined the models are called ISSMs, as already specified. These mod-

els were well known in the engineering community since 1960 when Kalman [Kal60] pre-

sented his avant-garde work, introducing the idea of the SSMs but more importantly having

demonstrated a recursive algorithm - known nowadays as Kalman’s filter - to produce a bet-

ter prediction while dealing with uncertainty.

To see statisticians make use of these models we have to wait till the 1980s; Harrison et

al. [HS76] introduced a particular class of SSMs named Dynamic Linear Models (DMMs)

where both the state and the measurement equations are linear operators. Later in 1984,

Harvey [Har84, Har90] exploited SSMs and Kalman’s filter to present his Structural Time

Series (STS) idea in which more than one state equation - one for each elemental compo-

nent, level trend and seasonality, of the time series - are there, the standard measurement

equation plus possible exogenous factors. One year later, as already mentioned before, Sny-

der considered the relationship between ES methods and SSMs but he was just the first one

to make the link. Over the years other methods and models received a re-treatment falling

under the SSMs umbrella, e.g. AR(I)MA and ARMAX.

Training & prediction With SSMs we enter the domain of stochastic models in which a

priori assumptions are required. The most common ones, which holds for several real ap-

plications and ease the calculation of the Kalman’s filter, are the linearity of the system and a

Gaussian distribution laid upon the error terms. Trying to outline the fitting procedure with-

out being too technical for the sake of conciseness, two different steps can be summarised:

33

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

prediction: applying the state equation to the a-priori state and its error, the current

state is generated as well as its related noise;

update: incorporating the observation through the measurement equations the cur-

rent state and error are updated, generating the

a-posteriori state and noise - i.e. the input for the next iteration -.

The forecasting step can be executed seemingly in the same way as ES methods and AR(I)MA

models, but in contrast SSMs are actually producing an entire forecasting distribution in-

stead of point forecasts. Once the conditioning range has been exhausted, estimations of

the state and the noise are available; the iteration producing new states and noise contin-

ues over the horizon but this time, without new measurements to correct for, the noise -

hence the uncertainty - starts to raise as we move further into the testing range. This effect

- sometimes called shotgun effect in the Supply Chain context, due to its visual appearance

- is desirable in virtue of the intuitive insight it gives: the more the model explores a foreign

region, the more the uncertainty grows, the more also extreme scenarios become probable.

Variations Unfortunately the Gaussian error assumption is the main reason why prac-

titioners from different fields restrain themselves from using SSMs. Modelling count data

- i.e. integer quantities - the Gaussian assumption doesn’t hold anymore - e.g. the forecast

could end foreseeing negative values - and other types of distributions are required to reflect

the data characteristics, for example the Poisson distribution or the Negative Binomial one.

In this case the computation of the Kalman’s filter becomes problematic and more complex

schema are employed, namely the Extended Kalman’s Filter [Sor85] - the system is approxi-

mated with a dual linear version around the state and the computation is carried over - and

the Unscented Kalman’s Filter [JU97] - for highly non-linear systems, uses a set of sampled

points around the mean and construct a surrogate of the true distribution -. Other filtering

techniques can be exploited - e.g. Particle Filters [DM97, LC98] - but they require advanced

knowledge, a proper implementation as well as computational time and cost.

SSMs are not limited to the forecasting task but are extensively adopted for filtering and

smoothing works in various context, e.g. sensors fusion.

The idea of STS has been brought back by Facebook - now Meta - in the past years with the

project known with the name Prophet [TL18]. For a full analysis of SSMs, their variants and

the relationship with other existing methods and models Harvey [Har90] and Koopman et

Durbin [KD01] are key references.

The works so far reviewed, even though different in nature, can all be categorised as white-

box models. They presume a certain degree of linearity in the relationship between the

34

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

dependent variable and co-variates; linearity which can be exploited by an expert user in

order to make the right assumption and use the right tools. These methods are children of

their time. Pattern recognition and modeling expertise was highly valued back in the 1980s,

maybe more than they are esteemed today. Personal computers were a reality - the average

size shrank from room to desk - but could only be sold in limited quantities - mainly to tech-

nicians of the field - and were far away from being widespread as they are nowadays. The lin-

ear relationship idea instead is something more complex to deal with and deeply-rooted in

human beings: the linear bias. As clearly exposed by de Langhe et al. [dLPR17] decades of re-

search in cognitive psychology have shown how human mind struggles to grasp non-linear

relationships, human beings are more keen on straight lines and clean geometry rather than

complexity. Linear reasoning serves well in many situations but in many others relying on

gut feelings can lead to modelling errors and poor decision making.

The potential to automatically discover non-linear relationships just processing the data

at hand is appealing and is driving attention on Neural Networks, however it implies ap-

proaching a black-box proposal which could not fit well in a human-centered decision mak-

ing processes.

2.4 Neural Architectures

Neural Networks - a.k.a. Artificial NNs (ANNs) or Simulated NNs, Fig. (2.3) - are a subset of

ML and the heart of Deep Learning algorithms. Their name and structure are inspired by the

human brain, since they are designed to mimic the way in which biological neurons interact

each other. They consist of a (fully) connected graph composed of different layers, each of

which consist of a collection of nodes also called artificial neurons. Two layers are always

recognizable in any NN architecture: the input layer - the entry point of the network - and

the output layer, where the predictions are collected. The number of nodes in the input layer

accommodate the number of independent variables in the model, similarly the number of

nodes in the output layer adjusts to the number of expected output variables. The number

of hidden layers present in the architecture can vary from one to many - architecture with

more than one hidden layer will be classified as Deep, Fig. (2.4) - depending on the assigned

task. Each neuron in the i -th hidden layer receives from the layer (i −1)-th - either the input

layer or another hidden one - one or more inputs x j and assign a weight w j
i to each of them.

The inputs are combined together and passed through a function f also known as activation

function. The result is passed to the next step in the network.

The main idea behind NNs can be dated back to 1943 when McCulloch et al. [MP43] made

the first hypothesis on how the human brain could produce complex patterns through the

neuron interactions and linked neurons with a binary threshold to the Boolean logic. Fif-

35

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

teen years after Rosenblatt [Ros58] built on top of McCulloch et al. work, adding weights

to the equation and presenting the oldest known neural network, the Perceptron - Fig. (

2.2) - i.e. a single artificial neuron. Fast-forward to 1989, Lecun et al. [LBD+89] applied

the backpropagation algorithm [RHW85] to successfully train a neural network to recognize

hand-written zip code digits provided by the U.S. Postal Service. While transitioning from

a “passing fad" to a valid modelling alternative, NNs started to compete with established

methods: they could have been computationally demanding but offered better results us-

ing the same data. A first utilization of ANNs for time series forecasting is dated back to 1996

by Czernichow et al. [CPI+96] who applied it to electricity load data. Nineteen ninety-nine

marked a significant evolutionary step for NNs; the growing computer’s processing capabil-

ities and the commercialization of the first Graphics Processing Units (GPUs), drastically

reduced NNs’ computational burden and paved the way for the forthcoming works. Over

the last few decades NNs prevailed in various fields like Computer Vision, Natural Language

Processing, autonomous vehicles and games with an abundant collection of architectures

and works published.

Supervised & unsupervised learning Before seeing in the coming paragraph how a NN

is trained, a mention about Supervised and Unsupervised learning is mandatory. In the cor-

responding paragraphs for each of the beforehand introduced shallow solutions, we always

passed the current observation either because it was stored for later use or since it was in-

volved in the computation of the current step. This is an example of supervised learning: we

fed to the model both the co-variates and the observations; the model used the co-variates

to build its own representation of the phenomenon and tested its hypothesis against the

observations. In this context observations take also the name of labels - or targets -, as a

consequence supervised learning is said to work on labelled data. As it will be explained

in the next paragraph, the error will be “pushed” through the NN to gradually update its

parameters.

Neural Networks are however used also in cases where no labels are available. For instance

discover groups of similar examples within the data - i.e. clustering - or project the data from

an high-dimensional space to a lower-dimensional space - dimensionality reduction -, with

the smallest information loss possible. We refer to this case with the name of unsupervised

learning, as a distinction with the former case.

Training & prediction The objective is always the same: find by some mean the best

combination of parameters producing the best outcome for the loss function of choice. The

difference now relies in the number of parameters involved in the search; while ES methods,

ARIMA(p,q,d) models and SSMs had just a bunch of parameters to be trained, NNs present

instead a number of parameters which grows directly with the number of nodes the network

36

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

x1

x2

x3

Σ

w1

w2

w3

f z

Figure 2.2: A Perceptron: the simplest form
of NN composed by a single artificial neuron.
Presented by Ronsenblatt [Ros58].

x1

x2

x3

Input Hidden

z1

Output

Figure 2.3: ANN with one hidden layer - plus
a bias (the yellow node) - taking 3 inputs and
returning one value.

x1

x2

x3

z1

Figure 2.4: Deep NN with 4 hidden layers - no bias - taking 3 inputs and returning one
value.

37

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

xt

tanhht−1

ht

ht

Figure 2.5: Basic Vanilla RNN layer. At each time step t the layer accepts the current input
xt and blends it with the past information in ht−1. The new information is stored in state ht

which is passed to the next layer. tanh and σ - standing for the sigmoid function - are two
of the most common activation functions employed.

is made of and their incoming edges. When the number of weights is too large, searching in

a “brute force" fashion as described so far is of course inconceivable, this is the reason why

backpropagation was such an effective way to train NNs.

Data flow into the input layer, get filtered by the network and an estimate is presented at

the output layer. The result is harvested, the loss function is computed and the error com-

mitted is quantified. Backpropagation allows the error to flow back from the output layer

till the input layer, updating the network weights on the fly. At the next iteration over the

data - known as epoch - the network emits a new output and the process continues until a

threshold on the error or on the maximum number of epochs is reached. This procedure has

great advantages in searching for a good combination of a huge collection of parameters as

well as different pitfalls, one of which is known as the vanishing/exploding gradient problem.

Imaging to stack the hidden layers one on top of the other - starting with that immediately

after the input layer and finishing with the one right before the output layer - as soon as the

network gets wider the lowest layers could either not receive any error information coming

from the upper layers, ending not updating their weights - in vanishing case - or ending

in instability - in the exploding case -. An early solution was a layer-by-layer pre-training

step but other solutions emerged over the years either as standalone or influencing network

design.

Prediction is accomplished feeding new unseen data to the network and observing the result

emitted at the output layer.

38

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

h

zt

xt

ht−1|t

= h1

z1

x1

h2

z2

x2

h1
h3

z3

x3

h2

Figure 2.6: A RNN is most of the time depicted in its rolled form, where the loop connection
is visible. However it is useful to take a look at its unroll version to better grasp how the
information retained in the state h passes from a layer to its successor.

Variants The basic architecture presented in this section is also called Feedforward NNs

(FNNs) as: each node is connected to each and every one node in the layers immediately

before and after; data flow in a forward way, from the input layer to the output one. Many

adaptations have been proposed in literature for any kind of task tackled, some of them are

out of the scope of the current manuscript, e.g. Convolutional NNs, hence only those rele-

vant to the subsequent presentation are here briefly described.

Recurrent NNs (RNNs) - sometimes also named Vanilla RNNs - are derived from FNNs and

it is said that they possess a “memory" since they keep an internal state h - i.e. a represen-

tation of the context seen so far by the network - which is propagated through time via a

loop connection. Using this “memory" this class of networks can exhibit temporal dynamic

behaviour, reason for which they are extensively used for problems involving sequences or

time series data. The basic RNN layer is depicted in Fig. (2.5). At each time step t the RNN

accepts an input xt , processes it together with its state ht−1 - and emits a new state h up-

dated with the information carried by xt . The state ht becomes an input for the network at

time t +1 together with xt+1. How much of the information stored in xt contributes to the

update of ht−1 is determined by inner activation function, the most popular one being the

hyperbolic tangent tanh. RNNs are also the first example of parameter sharing across differ-

ent layers: as can be seen in Fig. (2.6) we can unroll the loop and think the RNN as multiple

copies of the same network, each passing a message to a successor; since it is always the

same network repeating over and over, weights are also retained while iterating.

Exploding and vanishing gradient problems are still an issue for this kind of networks, but

is solved in general reducing the number of recurrent layers. These problems are also con-

nected to the long-term dependency problem affecting RNNs [BSF94]: if the relavant infor-

mation for the current forecast are not stored in the recent past but in a far away observation,

RNNs fail in handling the connection.

39

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

It is common to use interchangeably the term RNNs to identify either the vanilla architec-

ture or the family of recurrent networks embodying the vanilla and its adaptations.

Introduced by Hochreiter et Schmidhuber [HS97] in 1997 as a solution to the vanishing gra-

dient problem, Long Short-Term Memory networks (LSTMs) are themselves a variation

of RNNs. Solving the vanishing gradient problem, the authors indirectly address also the

long-term dependencies issues aforementioned. The main contribution is the extension of

the vanilla RNN with a “gating" mechanism plus and additional context ct also called cell

state. The main concept behind the introduction of the latter state is that ct is responsible

for capturing the long-term dependencies - being updated less frequently with respect to ht

and running along the whole chain - while ht will continue to focus on the local information

regarding the recent past.

In order to control the information flow and decide how much of it is worthy of passing

through and how much of it can be discarded, three different gates have been added: a “for-

get" gate, an “input" gate and an “output" one. The fist gate encountered is the forget gate

- σ f - which decides how much of the current information - coming from the combination

of ht−1 and xt - will be discarded and removed from the cell state. Next is the input gate - σi

and tanhi - determines which part of the information is going to be updated and produce

cell state candidates that update the current ct−1 to output the current ct . Finally also a new

state ht is produced based on both the input and a filtered version of the new cell state. The

basic LSTM layer is depicted in Fig. (2.7).

This architecture is far more complex than the Vanilla RNN adding more weights and com-

putational time to the table. LSTMs themselves are subject to variations that introduced

more recurrent architectures addressing the computational problem or introducing a new

hypothesis about how memory works in biological neurons.

This is by far the most used architecture in time series forecasting, being challenged only by

the introduction of the - still immature - Transformers [VSP+17] which are essentially based

on the concept of “attention" [BCB15].

Since RNNs in general and LSTMs in particular are well suited for sequence data, they

have found application in the context of Natural Language Processing and Neural Machine

Translation, especially arranged in the architecture better known as Encoder - Decoder. As

sketched in Fig. (2.8) this particular network is composed by two sub-networks, each one

in general made of several RNNs connected together. The first sub-network is called En-

coder and accepts the sequence in input; the second is named Decoder and accepts the final

hidden state of the Encoder in order to produce the output sequence. It is not unusual to

find works where the Encoder and the Decoder networks are played by the same RNNs.

40

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

σf

X

σi tanhi

X

+

σo

X

tanh

ht−1

ct−1

xt

ht

ht

ct

Figure 2.7: Basic LSTM layer.

x Encoder Decoder z

Figure 2.8: Encoder-Decoder architecture. Each *coder sub-networks is made of one or
more RNNs composed by one or more RNN layers.

41

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

Even if nowadays NNs - and ML techniques in general - are well accepted in practice they

are still not recognized as an established forecasting technique by practitioners, as noted by

Hippert et al. [HPS01] previously and Smyl [Smy20] later, with a significant gap between the

field progress and the industrial adoption. This gap can be possibly be rooted in the busi-

ness needs for model transparency - which facilitates the explanation -, training efficiency

- especially strict and restrained delivery time -, trustworthiness and ease of implementa-

tion. ARIMA, Exponential Smoothing and other standard methods and models were the

solutions at hand to answer these requests, being easy to implement, understandable by

everyone and requiring less data. The Makridakis Competitions - Sec. 3.1.5 - are a meeting

spot for these two, sometimes clashing, realities and highlight an evolutionary timeline of

forecasting methods.

For a more in depth review of time series forecasting methods and models, covering the

period 1985-2005, refer to De Gooijer et al. [DGH06] and Hippert et al. [HPS01].

2.5 Summary

Time series analysis (Sec. 2.1) and time series forecasting (Sec. 2.2) are two sides of the

same coin. Time series analysis tries to answer to the why behind a time series behaviour,

decomposing it into components and making assumption about the data distribution. It

demands knowledge of the application field, without discarding an expert judgement. As a

consequence it is prone to cognitive bias in the decomposition process or in the modelling

choices. Several properties are of interest to accomplish this task:

Univariate & multivariate If each and every observation of a time series is a scalar,

we say that it is univariate; in contrast if each and every observation groups several

values, we are dealing with a multivariate time series.

Regular & irregular If the frequency at which observations are recorded is constant,

then the corresponding time series is regular; irregular otherwise.

Stationary & non-stationary A time series can be qualified as stationary if its statis-

tical properties - i.e. the moments of its generative distribution, such as mean and

variance - don’t change over time. A clear example is a white noise, i.e. a time series

sampled from a Gaussian distribution. Differently the time series is noted to be a non-

stationary one. Stationarity is a type of dependence structure and a handy property,

indeed if a sequence is stationary than plenty of results which hold for independent

random variables also hold for the sequence.

42

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

Once all the principal characteristics of the data had been shown, the insights can be used

to select a model and continue with time series forecasting (how a time series will behave).

Forecasting a single value, e.g. the mean of the time series, takes the name of point forecast.

If instead we are interested not only in the quantity itself but also how much it can change,

we should prefer a probabilistic forecast task. Either if we are accomplishing a point fore-

cast or a probabilistic one, we can project the time series into the future just for a single step

(one step ahead) or for a fixed number of steps (multi-step ahead). Section 2.3 reviewed

all the classical methods and models to accomplish the forecasting exercise. Classical but

not antiquated since most of them - if not even all - remain undisturbed in the companies’

working flow. Section 2.3.2 and Sec. 2.3.4 are of particular interest for following chapters.

Established systems inevitably expect knowledge of the application domain to exploit a pri-

ori information. Neural Networks - and AI models and methods at large - are appealing for

their ability to autonomously discover patterns in the data.

Nonetheless they represent a standard shift, from white-box models to black-box ones. This

change could or could not be appropriate for distinct decision making processes, where

transparency is a worthwhile quality. Moreover the great majority of neural architectures

don’t directly handle the probabilistic forecast problem - for which adaptations are required

-, being relegated to point forecasts tasks. Sequences are treated with specific neural ar-

chitectures, called Recurrent Neural Networks, which retain a representation of the context

seen so far - summarised into a state - and propagate it through time. Recurrent Neural Net-

works come with several designs - some not treated in this context - but LSTM is by far the

most used architecture deign in practice. Attempts to merge standard methods and NNs are

not lacking, a top example is the ES-RNN [Smy20] architecture conceived by Smyl during

the M4 competition.

For a more in depth review of time series forecasting methods and models, covering the

period 1985-2005, refer to De Gooijer et al. [DGH06] and Hippert et al. [HPS01].

43

CHAPTER 2. TIME SERIES ANALYSIS AND FORECASTING

44

Chapter 3

Demand forecasting

Contents

3.1 Introduction . 46

3.1.1 Hierarchical and cross-sectional 46

3.1.2 Count time series . 47

3.1.3 Erratic, Lumpy, Smooth & Intermittent series 51

3.1.4 Bullwhip effect . 54

3.1.5 Makridakis competitions . 54

3.1.6 Metrics . 57

3.2 Datasets . 60

3.2.1 The Part dataset . 60

3.2.2 The M4 competition dataset 62

3.3 State-of-the-Art . 63

3.3.1 Deep auto-regressive recurrent networks 64

3.3.2 Deep state space models . 66

3.3.3 Neural basis expansion analysis 70

3.4 Research overview . 74

3.5 At Lokad . 75

3.5.1 Envision . 75

3.5.2 The forecasting engine evolution 76

3.6 Summary . 78

45

CHAPTER 3. DEMAND FORECASTING

3.1 Introduction

Economics and Supply Chain fields have been studied for decades and a copious literature

exists. The review will be organised as follow: we will present some of the most used and

well-known methods and models in industry, followed by more modern architectures in-

cluding some State-of-the-Art (SotA) design like DeepAR [SFGJ19] and Deep State Space

Models [RSG+18], both from Amazon. We will also review the history of time series fore-

casting through the various M Competitions and the respective winners which give us an

idea of how the landscape of this key component in many industrial and business decision

processes is evolving.

3.1.1 Hierarchical and cross-sectional

Time series can often be naturally disaggregated by distinctive attributes of interest or by a

geographical division. Taking again the hypermarket example we can start sorting the time

series by membership department - e.g. food -, continuing with the SKU’s category - e.g.

vegetable, fruit, etc. - and the SKU’s type - e.g. salad, apple, etc. - ending with the SKU itself,

see Fig. 3.1. Naming the hierarchy levels starting with `0 for the top level - or the leftmost one

in the figure - and ending with `n for the bottom one - or the rightmost one in the figure -,

the peculiarity of hierarchical time series lies in the dependency between successive levels.

The top level `0 is the aggregation of the time series at level `1, which in turn gathers the

values of time series at level `2 and so on and so forth, until we reach the last level.

The direct implication is that a forecast should maintain the same property; forecasting time

series at level ` j , we would like to add up them to those at levels ` j−1, then aggregate at ` j−2,

etc. while climbing the hierarchy. In other words we are asking for a coherent forecast that

has to be consistent with the aggregation structure.

An hypermarket in general is part of a chain with stores scattered over a region, a state or

a country. Each store will inherit the same hierarchy from the central management; the

same SKU is now sold in different places and we could be interested in understanding how

a specific product behaves not only in a single store, but across the chain and for a specific

country. In this case we talk about cross-sectional time series.

46

CHAPTER 3. DEMAND FORECASTING

Food

. . .

Hobbies

. . .

Animals

Store Vegetable

. . .

Fruit

. . .

Meat

Pear

. . .

Banana

. . .

Apple Pink Lady

. . .

Fuji

. . .

Gala

ℓ0 ℓ1 ℓ2 ℓ3 ℓ4

Figure 3.1: Example of hierarchical time series within a hypermarket. Each level in the hier-
archy can be treated either as a singular time series or as the result of the aggregation at the
lower level.

3.1.2 Count time series

Fields such as Economics, Epidemiology, Finance, Supply Chain, etc. intrinsically generate

non-Gaussian time series comprised of non-negative integers. These time series are called

count time series.

Count time series often expose a non-negative autocorrelation and could be over-dispersed,

i.e. their variance is greater than their mean. Depending on the field and/or the granularity

of the sampling process, count time series can be characterized by a high zero values tally.

Various distributions to handle count data are recommended in the literature, but two are

the most established one: the Poisson distribution - P(z;λ) - and the Negative Binomial one

- NB
(
z;r, p

)
; both of them accounting for a positive probability at zero.

Poisson

Is the most basic discrete probability distribution employed to model count data. It ex-

presses the probability of a given number of events occurring over a fixed time interval. The

occurrence of an event does not affect the probability of a second event to happen, imply-

ing an independence between events. The Poisson distribution is characterized by a single

parameter λ - the mean of the distribution, also called rate - and the following probability

47

CHAPTER 3. DEMAND FORECASTING

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

0

0.1

0.2

0.3

0.4

z

f
(z
|λ
)

λ = 1
λ = 4
λ = 8

Figure 3.2: Examples of three Poisson distributions with the different λ means.

mass function (pmf) 1

f (z|λ) = λz e−λ

z!
. (3.1)

The Poisson distribution is said to be equi-dispersed, i.e. the variance of the data σ2 equals

the mean of the data λ (σ2 = λ). Some examples for different values of λ are presented in

Fig. 3.2.

Negative Binomial

Negative Binomial (NB) is again a discrete distribution - even though extensions to the

continuous domain exist in literature - and a generalization of the Poisson one, made for

the over-dispersion case.

The distribution is completely defined by two parameters: r , the number of failures, and p,

the success rate. The distribution pmf is defined as follows

f
(
z|r, p

)= Γ (z + r)

z!Γ (r)

(
1−p

)z pr (3.2)

where Γ(·) is the Gamma function. In the limit p → 0, the NB degenerates to a Poisson

1The function describing the probability of an observed value z under a distribution is called:
probability mass function if the distribution is discrete - denoting the probability that a discrete ran-
dom variable will take on a particular value -; probability density function (pdf) if the distribution
is continuous - giving the probability that a continuous random variable will lie between a specified
interval -.

48

CHAPTER 3. DEMAND FORECASTING

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

0

0.02

0.04

0.06

0.08

0.1

0.12

z

f
(z
|r,

p
)

r = 1; p = 0.9̄0
r = 4; p = 0.7
r = 40; p = 0.2

Figure 3.3: Examples of three Negative Binomial distributions with the same meanµ (µ= 10
) obtained for different values of the characterizing parameters r and p.

distribution. For a given pair of
(
r, p

)
the mean and variance of the NB are defined as

µ= pr(
1−p

) ; σ2 =µ+ µ2

r
= pr(

1−p
)2 .

Figure 3.3 depicts three different NB distributions with the same mean µ= 10, but realizing

it via different parameter pairs, resulting in distinct variances and probability mass shapes.

Depending on the interpretation of the parameter r , being it either the number of failures or

the number of successes, alternative formulations are available. Sometimes it is beneficial

to substitute r with its reciprocal δ= 1/r which is also known as the shape parameter. Snyder

et al. [SOB12] proposed a definition characterized by the mean µ - which can also vary over

time - and η such that

p = η

1+η ; r =
(
1−p

)
µ

p
= 1

1+η ·µ · 1+η
η

= µ

η
;

f
(
z|µ,η

)= Γ (z +µ/η)

z!Γ (µ/η)

(
1

1+η
)z (

η

1+η
)µ/η

. (3.3)

Again Snyder et al. [SOB12] conducted an in-depth comparison of different statistical meth-

ods grounded on Poisson, NB and Hurdle shifted Poisson, reaching the conclusion that

NB worked better in representing intermittent demand data. The work also presented a

NB auto-regressive method which had been the SotA in demand forecasting tasks and had

49

CHAPTER 3. DEMAND FORECASTING

been used as competing baseline in [SFGJ19]. Having been proven to be effective in our

experiments, the notation in Eq. ((3.3)) has been adopted as the preferred NB formulation

throughout the present research work.

Under-dispersion Negative Binomial adjusts for Poisson over-dispersion but is not suit-

able if the time series is under-dispersed, i.e. the variance of the data is smaller than the

mean.

When dealing with under-dispersion the first suggested approach is to model the data with

a Binomial distribution. The Binomial distribution is defined by n - the number of trials

-, p - the success probability - and q = (
1−p

)
parameters. However when we move from

a Poisson distribution to a Binomial one, we are restraining the support for our data from

the entire domain of natural numbers including zero - Z0 - to the support {0, . . . ,n}. This

restriction could have either no effect or be impracticable, depending on the problem under

examination.

Generalized Poisson (GP) distribution [Fam93, Fam97] could be another candidate to focus

on the under-dispersion problem. In the GP definition, the Poisson distribution is extended

with a dispersion parameter φ: when φ > 0, the distribution address the over-dispersion

case; for φ = 0 the distribution is equi-dispersed, i.e. it degenerates to a Poisson distribu-

tion; if instead −2/λ < φ < 0, the variance is under-dispersed and the distribution accounts

for it. Generalized Poisson is not extensively used in practice, as far as we know, because

of the deviates generation process which count five different algorithms - that can lead to

significant computation overhead if not properly implemented - to be employed for distinct

parameter compositions [Fam97].

Likelihood, Log-likelihood & Negative Log-Likelihood

Equation (3.1) and Eq. (3.2) provide us a way to calculate the probability of observing a

particular set of outcomes by making suitable assumptions about the underlying stochastic

process. Generalizing, we could say that the probability of observing z under a set of distri-

bution’s parameters θ - e.g. θPoi sson = (λ) - is given by f (z|θ). We say that z is conditioned on

θ. When modeling real life stochastic processes, often parameters θ are not know and have

to be estimated. The optimization process should refine θ such that the probability f (·) of

observing z given the parameters are maximized. Therefore we are swapping the role of z

and θ since the latter are unknown. The new function L (θ|z) is called likelihood and the

associated optimization process is known as Maximum Likelihood Estimation (MLE).

Provided a set of independent identically distributed (i.i.d.) observations - or a time series

- Z, the likelihood is written as

50

CHAPTER 3. DEMAND FORECASTING

L
(
θ|Z)= f

(
z1|θ

) · f
(
z2|θ

) · · · · · f
(
zT|θ

)
=

T∏
j=1

f
(
z j |θ

)
. (3.4)

To maximize this function we would take its derivative and solve for equality to zero. How-

ever the long chain of multiplications involved will result in an excessive long expression.

Since we are interested only in the parameters and not in the function itself, it is handy to

work with the log-likelihood `
(
θ|Z)

function

`
(
θ|Z)= ln

(
L

(
θ|Z))= ln

(
T∏

j=1
f
(
z j |θ

))

=
T∑

j=1
ln

(
f
(
z j |θ

))
. (3.5)

Since the logarithm is a monotonic function, the maximum is preserved.

Gradient descent methods, either stochastic or not, are regularly used - and implemented

- to minimize a (error) function instead of maximizing it. We can surely transpose the

log-likelihood maximization problem into its dual, taking the negative log-likelihood and

searching for its minimum. The log-likelihood functions for the two distributions intro-

duced in the previous section are shown in Eq. (3.6) and Eq. (3.7) respectively.

`Poi sson
(
λ|Z)=−Tλ+ ln(λ)

T∑
j=1

z j −
T∑

j=1
ln

(
z j !

)
(3.6)

`NB
(
r, p|Z)=−T lnΓ (r)+Tr ln

(
p

)
+

T∑
j=1

lnΓ
(
z j + r

)
− ln

(
z j !

)
+ z j ln

(
1−p

)
(3.7)

3.1.3 Erratic, Lumpy, Smooth & Intermittent series

In 2005 Syntetos et al. [SBC05] tried to schematize a mechanical procedure to identify de-

mand patterns. Expertise was driving the demand categorization, especially in many inven-

tory control practices, with expert arbitrarily sorting the demand patterns to then proceed

with model selection and parameter optimization. The authors thought this process could

have been automatised. They conceived a classification purely based on two factors for any

given time series z1:T: the average inter-demand intervals - i.e. average distance between

two consecutive positive demands -

51

CHAPTER 3. DEMAND FORECASTING

ADI = Tot al number o f per i od s

Number o f posi t i ve demand bucket s
= T∑T

i=1 I6=0
(
zi

) (3.8)

and the squared coefficient of variation

CV2 = σ2

µ2 . (3.9)

The indicator function I6=0(·) is defined as

I6=0 (x) =
1, x 6= 0

0, other wi se

while σ and µ are the sample standard deviation and the sample mean, respectively, of

the non-zero values of z1:T.

They also proposed a new forecasting method and derived cut-off values for the two pa-

rameters, comparing the MSE of their method against the error committed by the Cros-

ton [Cro72] model. The goal was to have fixed thresholds to confidently suggest their method

or the Croston one for forecasting. The derived cut-off values together with the four classes

arising from the authors’ proposition are shown in Fig. 3.4.

CV 2 = 0.49 ADI

ADI = 1.32

CV 2

Erratic Lumpy

Smooth Intermittent

Figure 3.4: Demand patterns categorization as shown in Syntetos et al. The cutoff values for
ADI and CV2 had been derived by comparison between the MSE achieved by the authors’
forecast and the one obtained by the Croston’s method.

This categorization however is also interesting for an additional split, regarding the expected

52

CHAPTER 3. DEMAND FORECASTING

variability either in time or in quantity or both - Fig. 3.5 -:

Erratic Occurs for ADI < 1.32 and CV2 ≥ 0.49 and translates to a regularity in time but

a great variability in the observed values. For instance a weekly selling product for

which the demand goes from 7 to 700 from one week to the next.

Lumpy This is the most delicate pattern to forecast. Presenting a wildly varying posi-

tive demand at irregular time steps, the forecasting accuracy is fated to degrade. This

is one of the circumstances in which managing uncertainty plays a crucial role. In

terms of categorization parameters, a demand is categorized as lumpy for ADI ≥ 1.32

and CV2 ≥ 0.49.

Smooth The best case possible, which happens for ADI < 1.32 and CV2 < 0.49. The

demand time series is rich, with no irregularities.

Intermittent The demanded quantity does not undergo through massive changes,

however the appearance in time is irregular. A time series falls in this category if its

ADI ≥ 1.32 and CV2 < 0.49.

The year after, Kostenko et al. [KH06] reviewed the Syntetos et al. proposition and updated

the cut-off values to ADI = 4/3 = 1.3̄ and CV2 = 0.5.

V ariability
in timing

V ariability in quantity

Erratic Lumpy

Smooth Intermittent

Figure 3.5: Demand patterns categorization and their implication on the expected variabil-
ity in time and quantity.

53

CHAPTER 3. DEMAND FORECASTING

3.1.4 Bullwhip effect

Also known as whipsaw effect or whiplash, it is a symptom of coordination failure in tradi-

tional and modern Supply Chain. It refers to the amplification of small fluctuations - pos-

itive or negative - over the chain, starting at retailer level up to supplier stage. It was firstly

observed by Procter & Gamble’s (P&G) executives, analysing demand data for baby’s di-

apers: even though the demand placed at retailers was quite stable over time, the orders

placed by retailers to distributors were fairly variable; the orders placed by distributors to

P&G itself were higher than those they had received, finally the demand placed by P&G to

its own suppliers was even more volatile. The effect has been linked by researchers to an ir-

rational behaviour by managers overreacting to a certain event [Ste89] - e.g. small shortage

on one week - ordering more than needed. Over the years other factors added to the list,

including demand information misuse and forecast demand inaccuracies.

Even though ordering more than needed is a problem which affects inventory costs and ser-

vice levels, ordering less than needed can be even more detrimental for businesses. Suppose

to strictly endorse the forecasting suggestion; forecasting a lower demand leads to order-

ing a lower quantity to cover the future needs. However the actual demand stands above

that foreseen, the available stocks can not cope with it and we enter a stock-out situation.

Stock-outs censor the potential demand - that most probably will be place to competitors

by customers - and at the next iteration the forecasting engine could evaluate a even lower

demand, starting an inward spiral which could lead to great income loss if not recognized.

3.1.5 Makridakis competitions

Makridakis Competitions have been started by Prof. Spyros Makridakis in 1982, in response

to some hostility and charge of incompetence emerged in the occasion of a precedent com-

petition. Five years before, in 1979, Makridakis et al. [MHM79] presented to the Royal Sta-

tistical Society a study involving 111 time series and more than 20 forecasting methods. At

the time forecasting “competitions” were carried out by single research group or individu-

als comparing several forecasting methods, since it was not feasible to conduct large-scale

forecasting competitions as we are used to do today. The results presented, driven by data,

caused quite a stir as in contrast with the mindset of the time. The common belief was that

a single model - e.g. ARIMA, Box-Jenkins, etc. - could describe the data and the work of a

forecaster was to uncover it. Therefore in the first Makridakis Competition - abbreviated in

M Competitions - anyone was invited to submit a solution while using a common dataset

made of 1001 time series. The intent was to evaluate and compare the accuracy of different

forecasting methods and models, removing the possible forecaster’s incompetence excuse.

Over the years these competitions gain attention from both Academia and practitioners pro-

54

CHAPTER 3. DEMAND FORECASTING

viding to the attendants a growing number of time series, harvested from different fields and

companies, and greeting an increasing set of different methods and models.

The first competition [MAC+82] counted 1001 time series taken from demography, industry

and economics, and ranged in length between 9 and 132 observations. All the data were ei-

ther non-seasonal - e.g. annual - quarterly or monthly. More than 24 submissions, between

methods and models, had been investigated, nine of which were variations - e.g. to include

seasonal effects - of another one. A common example is the ARARMA [Par82] model. The

fundamental conclusions drawn after the competition’s end were: combinations of various

models and methods outperformed, on average, the individual methods being combined

and did well compared to others; the ranking of the methods varied according to the ac-

curacy metric being used; the length of the forecasting horizon had a direct impact on the

methods’ performance; statistically sophisticated or complex models - like those belong-

ing to the AR(I)MA family - didn’t perform systematically better than simpler methods or

models. The latter statement confirmed the findings of the previous challenge and got got

criticised again for not being enough aligned with real business scenarios. Remarkably, the

best performing method was a “DSES” a method employing a classical multiplicative de-

composition followed by a simple exponential smoothing to forecast the seasonal adjusted

data together with a naïve method to forecast the seasonal component.

To address such criticisms the organisers cooperated with firms to gather real data. The

M2 Competition [MCH+93] counted only 29 time series - but with a much richer context

information - and ran in real-time and gave to the practitioners the chance to manually

incorporate information and insights in a post-hoc way. Nevertheless this additional degree

of freedom didn’t change the conclusions of the first competition and the best performing

forecast method was a SES with damping.

The third competition in the series [MH00], taking place in 1998, saw the number of time

series jumping to 3003. Data had been collected from a wider selection of fields - e.g. fi-

nance and demographic - with lengths ranging from 14 to 126 observations. Again time

series were either non-seasonal - e.g. annual -, quarterly or monthly. Practitioners from

the emerging (for the time) Neural Networks field had been asked to partecipate, but the

call didn’t receive a swift response. The competitions upheld the findings from the previ-

ous two challenges even though ARIMA and Box-Jenkins models could be listed in the top

performing entries, in contrast with their results in the preceding competiitons. Another

top performer in the competition was the commercial forecasting software package Fore-

castPro, which most probably used a state space approximation to select between a simple

exponential smoothing and an ARIMA model, based on the BIC calculation. The winner of

the competition was the so called Theta model.

55

CHAPTER 3. DEMAND FORECASTING

Theta model [AN00] The basic idea was to double differentiate the input time series to

create a surrogate one. The local curvature of the surrogate time series is modified by a

“Theta-parameter" - simply θ -; different values of θ correspond to a different deflated or

delated surrogate time series that are named “Theta-lines". The Theta-lines are extrapo-

lated independently and then recombined to produce the forecast. The authors used a lin-

ear combination, but different combinations can also be exploited. In 2003 Hyndman et

Billah [HB03] demonstrated how this method is equivalent to a SES with drift, where the

drift parameter can be initialized as half the slope of a linear regression fitted to the data.

The M4 Competition [MSA18a], after almost 20 years from its predecessor, the second to

last competition in the sequence started. Having to cover so many years and relative ad-

vances, both in data availability and models at hand, the competition had to scale with ref-

erence to the previous ones. The dataset was made of 100’000 time series, coming from

the usual fields - like finance, demographic, etc. - but weekly daily and hourly data were

included along with annual quarterly and monthly ones. In contrast with the four previ-

ous challenges, the partecipants had been invited to submit prediction intervals as well as

point forecast. Furthermore the solution should had been open-sourced - for reproducibil-

ity purposes - and posted on GitHub 2. The number for entries based on Machine Learning

techniques was stunning, out of 64 methods tested in total, 49 could be classified as belong-

ing to the ML realm.

ESS-RNN [Smy20] Winner of the M4 competition with a solid margin, it was submitted

by Slawek Smyl - right then working full time on time series forecasting at Uber - and it was

illustrative of an “hybrid" approach; in particular it was the mixture of a ES method with a

RNN. Specifically the author used a multiplicative Holt-Winter model where the equations

for level and seasonality where SES formula, while the LSTM was delegated to the identifi-

cation of a non-linear trend.

The findings of the first three competitions were partially overturned by the M4. Combi-

nations of methods/models were still a good way to improve the forecasting accuracy but

there was not anymore a clear advantage of simple methods/models over more complex

ones. Even if some of the NN methods or pure ML approaches submitted were not able

to beat the benchmarks, the solution proposed by Smyl highlighted the potential of hybrid

methods.

2GitHub: https://github.com

56

https://github.com

CHAPTER 3. DEMAND FORECASTING

3.1.6 Metrics

The metrics presented in Sec. 2.2.2 could virtually be employed also in the demand forecast

case, but we must pay attention. As Hyndman [H+06] highlighted, for example, some of the

traditional metrics are not tailored to demand data - especially for intermittent demand -

since they can give infinite or undefined values.

If the subtended predictive distribution is - or is assumed to be - symmetric, than choosing

either MAE or RMSE will lead to the same point forecast since the median and the mean of

the data are equal.

Ja
n
19
98

A
ug
19
98

M
ar
19
99

Se
p
19
99

A
pr
20
00

O
ct
20
00

M
ay
20
01

D
ec
20
01

0

2

4

6

8

10

12

Time

U
n
it
s

Mean
Median

Figure 3.6: Plot of the first 39 months of the low-level sparse demand presented in Fig. 1.4,
together with the relative histogram. Employing RMSE or MAE will lead the optimization
process to converge towards the Mean line and theMedian line respectively. The forecast
generated by a model optimized via MAE using data resembling the displayed one, will
therefore be inconsistent with a real business scenario resulting always in zero.

However if the predictive distribution is asymmetric, the RMSE and the MAE will lead the

optimization towards two distinct targets. Taking the low-level intermittent demand pre-

sented in Fig. 1.4 as an example and plotting the relative histogram in Fig. 3.6, the RMSE will

lead the optimization towards µ̂ = 1.3 - which is in the neighbourhood of true mean µ = 1

- while MAE will point to the median µ̃ = 0. Having a forecast biased towards zero has no

concrete business utility and brought to discard the use of MAE in practice for this kind of

tasks.

57

CHAPTER 3. DEMAND FORECASTING

Scale-independent metrics are available, for example those belonging to the percentage er-

ror family - e.g. the MAPE (Sec. 2.3.3) - but these latter make sense only in those contexts

where divisions and ratios have a meaning. Percentage errors have the disadvantage to be

both infinite or undefined for any observation equal to zero. To cite an instance MAPE had

been used during the M3 competition but only including strictly positive data in the compe-

tition dataset. Additionally they have an extremely skewed distribution when the observa-

tion is close to zero. Finally percentage errors put a heavier penalty on positive errors than

negative ones, circumstance which could lead to the bullwhip effect (Sec. 3.1.4). The lat-

ter observation preceded the introduction of “symmetric” errors like the symmetric MAPE (

sMAPE) 3. Nevertheless other disadvantages typical of the MAPE remain.

A possible alternative are scaled-errors metrics in which the error realized by a forecasting

method is related to that of a benchmark one. An example is the Mean Absolute Scaled

Error (MASE), proposed by Hyndman et al. [HK06] and used in the occasion of the M4

competition. Usually the benchmark method is the Naïve one introduced in Sec. 2.3.1.

Mean Absolute Scaled Error (MASE)

The idea is to scale the error based on the in-sample MAE from the naïve forecast (see

Sec. 2.3.1). For a single time series zt0:Ti
and related prediction ẑt0:Ti

, MASE is defined as

All the metrics discussed so far could be applied to the probabilistic forecasting problem

only if we restrict our selves to either the mean or the median of the process. However, the

need to extrapolate uncertainty information is what guide users’ attention to this kind of

problem. We need another set of metrics.

Pinball Loss

Well known in the context of Quantile Regression - where it is also referenced as Quantile

Loss -, it is an asymmetrical loss function defined as

Lρ
(
z, ẑ

)=
ρ

(
z − ẑ

)
z ≥ ẑ(

1−ρ)(ẑ − z
)

z < ẑ
ρ ∈ (0,1)

or compactly

Lρ
(
z, ẑ

)= Iz≥ẑρ|z − ẑ |+ Iz<ẑ
(
1−ρ) |z − ẑ |

3sMAPE
(
z1:T, ẑ1:T

)= 200
T−1

T∑
t=1

|zt−ẑt |
(|zt |+|ẑt |)

58

CHAPTER 3. DEMAND FORECASTING

where ρ is the target quantile and I∗(·) is an indicator function telling us if the prediction is

either equal or greater than the observation or the other way round. Generalizing the metric

to a vector case

Lρ
(
zi

1:Ti
, ẑi

1:Ti

)
=

Ti∑
t=1;

I
zi

t ≥ẑi
t

ρ|zi
t − ẑi

t |+
Ti∑

t=1;
I

zi
t <ẑi

t

(
1−ρ) |zi

t − ẑi
t | (3.10)

Playing with the ρ value, it is possible to assign different penalties to the under-forecasting

and the over-forecasting cases, property really appreciated for the reasons explained in the

paragraph about Bullwhip effect.

When the target quantile is ρ= 0.5, the Pinball Loss is said to be “equal" to the MAE; indeed

Eq. (3.10) reduces to

L0.5

(
zi

1:Ti
, ẑi

1:Ti

)
= 1

2

Ti∑
t=1;

I
zi

t ≥ẑi
t

|zi
t − ẑi

t |+
1

2

Ti∑
t=1;

I
zi

t <ẑi
t

|zi
t − ẑi

t |

= 1

2

Ti∑
t
|zi

t − ẑi
t |

which differs from MAE only by a constant factor, ineffective in terms of optimization.

ρ-risk

It is a modified version of the Pinball Loss, introduced by Seeger et.al [SSF16] and proposed

again in [SFGJ19, RSG+18]. Over the time range {1, . . . , t , . . . ,Ti } we compute the quantity

Zi = ∑
zi

1:Ti
= ∑Ti

t=1 zi
t , i.e. the sum of the observations. For any given quantile ρ ∈ (0,1)

the corresponding sum is defined as Ẑρ,i = ∑
zρ,i

1:Ti
= ∑Ti

t=1 zρ,i
t . The predicted values zρ,i

1:Ti

can be acquired through quantile regression, Monte Carlo simulation or any other sampling

method. With Zi and Ẑρ,i so estimated, we can compute Lρ(Zi , Ẑi), following the definition

given in Eq. (3.10). Finally we will use the latter score to measure the ρ-risk

QLρ =
Lρ

(
Zi , Ẑi

)
Zi

. (3.11)

The definition of this metric can sound redundant once the pinball loss had been intro-

duced. Nonetheless, as pointed out by Salinas et al. [SFGJ19], it is needed to scale the pinball

loss when the magnitudes of the time series involved differ widely, i.e. the time series are

either erratic or lumpy. Dividing by the sum of the observations the error is kept in the same

range. We could say that the relationship between the pinball loss and the ρ-risk is the same

as that between MAPE and the Weighted Mean Absolute Percentage Error (wMAPE). The

59

CHAPTER 3. DEMAND FORECASTING

weighted MAPE had been devised to overcome the infinity or undefined issues of its ances-

tor. Being computed over the whole time series rather than single data point, the metric can

go to infinity only if the whole time series is zero.

wMAPE
(
zi

1:T, ẑi
1:T

)
=

T∑
t=1

∣∣zi
t − ẑi

t

∣∣
zi

t

(3.12)

If observations are only positive values we can drop the absolute operator, landing to a def-

inition that can be mapped to that of the ρ-risk.

3.2 Datasets

3.2.1 The Part dataset

Presented in [HKOS08] the dataset comprises 2674 aligned monthly series of slow moving

parts supplied by a US car company. Covering a period of 51 months - a bit more than

four years, from January 1998 to March 2002 - the majority of the time series, 89% of them

specifically, are over-dispersed with an average dispersion ratio of 2.3. Only 2059 time series

possess a complete history - i.e. no missing data - with an average gap between positive

demands of 2.9 months. To avoid any computational problem with time series containing

too few strictly positive observations, the number of time series had been culled from 2059

to 1046 keeping only those time series with

• at least 10 months with positive demand;

• at least some positive demands in the first 15 and in the last 15 months.

The culling process had been described in Snyder et al. [SOB12]. Figure 3.7 proposes again

the data shown in Fig. 1.4 - which had been sampled from this dataset - together with the

relative histogram and the aggregated demand.

A clear descendent trend is visible in the aggregated data but, as is already evident in the

same figure, it is not always discernible if and how such a trend operates at the single SKU

level.

Following Syntetos et al. categorization the parts dataset can be summarised as displayed

in Tab. 3.1.

The dataset had been used by Snyder [SOB12] - as a benchmark for all the methods tested

in the work - and by Salinas et al. [SFGJ19] and Rangapuram et al. [RSG+18] to compare

against Snyder’s work. To be aligned with Rangapuram et al. [RSG+18], the cut-off value to

60

CHAPTER 3. DEMAND FORECASTING

Ja
n
19
98

A
ug
19
98

M
ar
19
99

Se
p
19
99

A
pr
20
00

O
ct
20
00

M
ay
20
01

D
ec
20
01

0

2

4

6

8

10

12

Time

U
n
it
s

(a)

0 2 4 6 8 10 12

0

10

20

Units

F
re
q
u
en
cy
(%

)

(b)

Ja
n
19
98

A
ug
19
98

M
ar
19
99

Se
p
19
99

A
pr
20
00

O
ct
20
00

M
ay
20
01

D
ec
20
01

400

600

800

1,000

1,200

1,400

Time

U
n
it
s

(c)

Figure 3.7: (a) Time series, already presented in Fig. 1.4, identified with #10055165 in the
original dataset. The relative histogram is shown in (b). (c) The aggregated demand over
the whole dataset.

Table 3.1: Parts’ categorization per Syntetos et al.

Erratic Lumpy Smooth Intermittent

≤ 0.2% ≈ 20% ≤ 0.1% ≈ 80%

61

CHAPTER 3. DEMAND FORECASTING

split the dataset into training and testing set had been appointed at Ti = 39. The training

set contains the first 39 months while the last year is used as prediction range, i.e. Ti+h = 51

with h = 12. The original dataset is released under a GPL-3 license and is available in its raw

format at [HKOS].

3.2.2 The M4 competition dataset

Released for the fourth edition of the M Competitions, it is very heterogeneous dataset. One

hundred thousand time series, representative of six different domains, had been randomly

selected from the ForeDeCk 4 database. Differently from previous competitions, hourly daily

and weekly time series had been included along with monthly quarterly and annual ones.

The summary is shown in Tab. 3.2.

For each frequency a minimum number of observations had been ensured, specifically: 700

for hourly, 93 for daily, 80 for weekly, 42 for monthly, 16 for quarterly and 13 for yearly series.

In addition, to guarantee error-free metric calculations, the organizers scaled each and ev-

ery time series to prevent negative observations and values lower than 10. The scaling was

performed adding a constant to the series so that their minimum value was equal to c = 10,

precisely. The addition of a constant c to data with a shifting purpose is a functional artifice,

used as habitually in competition or research contexts as avoided in enterprise’ practices.

The main reason is the possibility to either hide or erase some features of the data, for in-

stance a shift in the original values could elicit a variation of the beneath distribution - re-

locating the peak previously on zero - and modify the probabilities of the values within the

range [0,c].

Individually the different frequencies had been provided as standalone datasets - already

subdivided into training and testing - and could be treated accordingly, requesting a specific

horizon h. The time series had been anonymized and any information that could lead to

their identification had been omitted, including the starting dates of the series (which did

not become available to the participants until the M4 had ended). The dataset is available

in its entirety at the competition repository [Mak18].

In contrast with the parts dataset, the Ti value can vary from series to series as well as Ti+h .

To be aligned with Rangapuram et al. [RSG+18] and Oreshkin et al. [ODPT21], we target only

the hourly dataset for the current work. The subset is composed by 414 time series, all be-

longing to the domain Other, with a length ranging from 700 to 960 data points. The request

horizon was h = 48 hours. Table 3.3 reports the hourly dataset categorization following Syn-

tetos et al. While the percentages of lumpy and intermittent time series don’t change too

much, there is a difference of exactly 8.22 percent between those for erratic and smooth

4No reference had been found for the dataset.

62

CHAPTER 3. DEMAND FORECASTING

Table 3.2: M4 dataset composition: the number of time series divided by their frequency
and domain.

Domain

Freq./h Demogr. Fin. Ind. Macro Micro Oth. Total

Hourly/48 0 0 0 0 0 414 414
Daily/14 10 1’559 422 127 1’476 633 4’227
Weekly/13 24 164 6 41 112 12 359
Monthly/18 5’728 1’0987 10’017 10’016 10’975 277 48’000
Quarterly/8 1’858 5’305 4’637 5’315 6’020 865 24’000
Yearly/6 1’088 6’519 3’716 3’903 6’538 1’236 23’000

Total 8’708 24’534 18’798 19’402 25’121 3’437 100’000

data. We can imagine that the scaling process moved some erratic and lumpy time series -

changing their CV2 and consequently their variability in quantity (Fig. 3.4 and Fig. 3.5) - to

the smooth and intermittent basket respectively.

Table 3.3: M4 Hourly categorization, per frequency, along Syntetos et al. “In Competition”
points to the categorization ran on the time series as given. “Re-scaled” refers to the time
series purged from the added constant c = 10. The last line in the table reports the catego-
rization as found in Oreshkin et al. [ODPT21]

Erratic Lumpy Smooth Intermittent

In Competition 6.76% 10.63% 52.42% 30.19%
Re-scaled 14.98% 10.87% 44.20% 29.95%
Oreshkin et al. 17% -- 83% --

About sixty percent of the M4 time series are characterized by a rich history - compared to

those in the parts dataset - emphasized by a low variation in the time steps, i.e. a lower

average inter-demand interval.

3.3 State-of-the-Art

While in Sec. 2.3 we already discussed the standard methods, the corresponding section

regarding the neural architectures didn’t introduce any specific model, preferring the intro-

duction of some of the essential architectures. Those architecture are the foundation for the

state-of-the-art models introduced in the following. Three main works had been chosen as

benchmark for this study: DeepAR [SFGJ19],

DeepSSM [RSG+18] and N-Beats [ODPT21]. The latter is considered to be the SotA model

63

CHAPTER 3. DEMAND FORECASTING

thanks to its performance on the M4 dataset and the claimed interpretability. The first two

instead were the previous SotA models, both coming from Amazon Lab’s groups. They are

interesting because, contrary to N-Beats, they are commercially available and hence virtu-

ally usable in a production environment. Moreover, while N-Beats had been presented as

a general solution for time series forecasting, DeepAR and DeepSSM persist specifically on

the demand forecasting task (even though they can be used for time series forecasting at

large) with a probabilistic perspective.

3.3.1 Deep auto-regressive recurrent networks

Long Short-Term Memory Networks (Fig. 2.7) had been designed to handle local temporal

data and are extensively used in architectures for time series forecasting models. In gen-

eral they are trained at single time series level and are asked to produce predictions directly.

Their usage in the DeepAR architecture is a bit more peculiar.

The authors aim at creating a global model, trained over related time series to handle quan-

tities’ variability. Additionally, being interested into the data’ statistical properties, they set

a probabilistic forecasting problem. Therefore LSTMs are requested to output a latent rep-

resentation of the distribution’s parameters, rather than a prediction. The architecture is

assembled into an Encoder-Decoder network where the same LSTM plays both roles. The

LSTM, arranged in a many-to-many style, is fed with multiple time series at each step. The

latent representation is then passed through a fixed number of dense layers - as numerous

as the target distribution’s parameters - to be mapped to the chosen distribution’s parame-

ters.

Training The left side of Fig. 3.8 illustrates the training process. Given the i -th series and

a conditioning range [1, . . . , t , . . . , t0 − 1], at each time step t the network is fed with: a) the

previous network state hi
t−1; b) the target value at the previous time step zi

t−1; c) the (op-

tional) co-variate xi
t . Transforming these inputs, the latent representation θi

t is produced.

How the latent representation is then mapped to distribution’s parameters depend on the

hypothesis made:

Gaussian (Normal) distribution ordinary choice for real-valued data, especially in

conjunction with state space models. The researchers had chosen the conventional

Gaussian parameterisation, i.e. the distribution is fully described by its mean µ and

standard deviation σ, such that θ= (µ,σ).

64

CHAPTER 3. DEMAND FORECASTING

Figure 3.8: Summary of the DeepAR model as reported in [SFGJ19]. (Left) Training:
at each time step t , the network is fed with the co-variates xi ,t , the target value at the
previous time step zi ,t−1, and the previous network output hi ,t−1. The network output

hi ,t = h
(
hi ,t−1, zi ,t−1, xi ,t ,Θ

)
is then used to compute the parameters θi ,t = θ

(
hi ,t ,Θ

)
of the

likelihood p(· | ·). (Right) Prediction: starting from t ≥ t0 a sample ẑi ,t ∼ p
(· | θi ,t

)
is drawn

and fed back for the next point until the end of the prediction range t = t0 +T, generating
one sample trace. Repeating this prediction process yields many traces that represent the
joint predicted distribution.

µ= wT
µhi ,t +bµ (3.13)

σ= log
[

1+exp
(
wT
σhi ,t +bσ

)]
(3.14)

The mean is given by an affine function of the network output - Eq. (3.13) -, at the

same time the standard deviation is obtained by applying an affine transformation

followed by a softplus activation in order to ensure σ> 0 - Eq. (3.14) -

Negative Binomial distribution already outlined in Sec. 3.1.2, it is a standard choice

for positive count data. The distribution had been parameterised via its mean µ and

shape parameters δ - i.e. θ== (µ,δ) -

µ= log
[

1+exp
(
wT
µhi ,t +bµ

)]
(3.15)

δ= log
[

1+exp
(
wT
δhi ,t +bδ

)]
(3.16)

Both the mean and the shape parameters are given by an affine transformation fol-

lowed by a softplus activation of the network output - Eq. (3.15) and Eq. (3.16)

respectively -, to ensure that µ and δ are greater than zero.

Distribution’s parameter θ and those belonging to the LSTM - namely w∗ and b∗ - are gath-

65

CHAPTER 3. DEMAND FORECASTING

ered together into the parameters set Θ and learnt maximizing the log-likelihood of the se-

lected distribution. We already introduced the Negative Binomial’s log-likelihood in Eq. (3.7),

in the following the Gaussian log-likelihood is presented together with its pdf (Sec. 3.1.2) :

f
(
µ,σ|z)= 1

σ
p

2π
exp

[
−1

2

(z −µ
σ

)2
]

(3.17)

`Gaussi an =−T ln(σ)− T

2
ln(2π)−

T∑
j=1

(
z j −µ

)2

2σ2 . (3.18)

Quoting the authors it is worth mentioning that other distributions can also be used readily,

e.g. a beta likelihood for data in the unit interval, a Bernoulli likelihood for binary data, or

mixtures in order to handle complex marginal distributions, as long as samples from the

distribution can be obtained cheaply, and the log-likelihood and its gradients with respect

to the parameters can be evaluated.

Prediction Figure 3.8, right side, demonstrates the prediction procedure and it is quite

straightforward. To output a prediction ẑi
t over the horizon {t0, . . . , t , . . . ,T}, the network

makes use of the learnt distribution’s parameter, drawing a sample ẑi
t (z̃i ,t in the figure)

from the estimated prediction. The same sample is fed back to the network for the next step

and the process repeats untile the prediction range has been exhausted.

Repeating the prediction a fixed number of time, yields to the generation of several traces

which approximate the predicted distribution. From this set of traces it is possible to extract

quantiles of interest, the median - ρ= 0.5 - and ρ= 0.9 specifically (also called 0.5-risk and

0.9-risk in the paper).

3.3.2 Deep state space models

About one year after the first publication on arXiv 5 of the DeepAR paper, another reasearch

group affiliated with the Amazon Research Lab presented DeepSSMs

[RSG+18] to the 32nd Conference on Neural Information Processing Systems

(NeurIPS 2018), at Montréal. The central objective is the same that guided the DeepAR

group: construct a global model which can learn jointly from several time series. The steps

undertaken to achieve the goal diverges. The DeepSSM architecture is a bit more compli-

cated than that presented with DeepAR, so let’s proceed step by step.

The main global dispatcher role is always entrusted to a LSTM. It is parameterised via the set

5arXiv: https://arxiv.org/

66

https://arxiv.org/

CHAPTER 3. DEMAND FORECASTING

Φ which are jointly optimized over all the data, as it was also the case for DeepAR. As done

previously we identify with hi
t the network state and with hi

t = h
(
hi

t−1, xi
t ,Φ

)
its output, with

xi
1:t series-wise co-variates up to time t .

At single zi time series level, a linear state space model is applied. As briefly described in

Sec. 2.3.4 two steps are required while training a SSM: a transition step - or state equation -

and an observation one - also called measurement equation -. A linear innovation SSM can

be defined as

lt = Ft lt−1 +gi
tε (transition)

y i
t = ai ,T

t li
t−1 +bi

t

zi
t = y i

t +σi
tε (observation)

(3.19)

li
t ∈RL identifies the L-dimensional state of the model and ε ∼N (0,1) is the Gaussian error

model which will dictate its likelihood. The initial state li
0 ∼N

(
µi

0,Σi
0

)=N
(
µi

0,diag
(
σi ,2

0

))
is assumed to follow an isotropic Gaussian distribution. The transition equation is described

by the transition matrix Fi
t and a random innovation gi

tε. Similarly the observation equation

is defined via the observation matrix ai
t - even though in this case it is just a vector -, the bias

bi
t and the noise σi

tε. The transition’s noise part is called innovation due to its time depen-

dency, in fact it could have been written as N
(
0,gi

t

)
. The same is true for the observation’s

noise, i.e. N
(
0,σi

t

)
. All together, matrices, bias and random noises form the linear SSM’s

parameters group Θi
t =

(
µi

0,Σi
0,Fi

t ,ai
t ,bi

t ,gi
t ,σi

t

)
. Nevertheless this collection of parameters

is not the learning target, they have to be deduced from the global shared parameters Φ in-

stead. The extrapolation is supervised by the mapping function Ψ such that, at each time

step t

Θi
t =Ψ

(
xi

1:t ,Φ
)

(3.20)

The introduction of the linear model, its set of parameters and the mapping function Ψ (·)
marks the difference between the current architecture and the DeepAR’s one. If in the latter

each and every time series received the same collection of parameters - i.e. was governed

by the same stochastic process (the same distribution) - in the DeepSSM’s conception time

series are treated individually, deducing the corresponding linear SSM’s parameters from

those shared by the global model, i.e. Φ, via Ψ (·). In other words in the former the LSTM

will directly output the distribution parameters, in the latter it will return proxies to a sub-

model parameters.

The mapping function Ψ (·) itself is a collection of affine mappings, followed by element-

67

CHAPTER 3. DEMAND FORECASTING

wise transformations restricting the parameters to the appropriate range. Specifically, once

the hi
t is available, each SSM parameter θi

t ∈Θi
t goes under an affine transformation

θ̃i
t = wT

θhi
t +bθ

to then be fed to different constraints, depending on the target parameter domain:

θi
t ∈R , e.g. bt , undergoes no transformation;

θi
t > 0 goes through a softplus, i.e.

θi
t = log

[
1+exp

(
θ̃i

t

)]
;

θi
t ∈ [a,b] experiences a scaled and shifted sigmoid, i.e.

θi
t = (b −a)

1

1+exp
(−θ̃i

t

) .

This is not really dissimilar to Eq. (3.13) – (3.16).

Training Consistently with DeepAR, the log-likelihood is maximized to learn the param-

eters Φ too. Contrary to DeepAR, it is not so straightforward. The likelihood now has a

dependecy from the linear SSM’s state, which has to be marginalized out. Precisely, given a

dataset D=
{

zi
1:Ti

}N

i=1

`
(
Φ|D)= N∑

i=1
ln

[
f
(
zi

1:Ti
|xi

1:Ti
,Φ

)]
=

N∑
i=1

ln
[

fSSM

(
zi

1:Ti
|Θi

1:Ti

)]
(3.21)

where fSSM (·) - pSS (·) in Fig. 3.9a - is the per linear SSM marginal likelihood

fSSM

(
zi

1:Ti
|Θi

1:Ti

)
= f

(
zi

1|Θi
1

) Ti∏
t=2

f
(
zi

t |zi
1:t−1,Θi

1:t

)
=

∫
f
(
l0

)[Ti∏
t=1

f
(
zi

t |li
t

)
f
(
li
t |li

t−1

)]
d l0:Ti

.

This is required since the state is not deterministic and hence its distribution - i.e. all the

possible values - has to be taken into account. Since the authors had set all the distribution

as Gaussian, the marginalisation is “easily” computed via the Kalman filtering algorithm. In

68

CHAPTER 3. DEMAND FORECASTING

(a)

(b)

Figure 3.9: Summary of the Deep State Space Models architecture as reported in [RSG+18].
(a) Training: the network is fed with the co-variates x(i)

t and the previous network out-

put h(i)
t−1 at each time step t in the training range 1,2, . . . ,Ti . The network output h(i)

t =
h

(
h(i)

t−1, x(i)
t ,Φ

)
is then used to compute the parameters of the state space model Θ(i)

t after

mapping it to the corresponding ranges of the parameters. Given the time series obser-
vations z(i)

1:Ti
, the likelihood of the state space parameters θ(i)

1:Ti
(which are functions of the

shared network parametersΦ) is computed. (b) Prediction: given the posterior of the latent
state, prediction samples are generated by recursively applying the model equations where
the state space parameters for the prediction range Θ(i)

Ti+1:Ti+τ
are obtained by unrolling the

RNN in the prediction range.

69

CHAPTER 3. DEMAND FORECASTING

the original paper the authors point out that other choices than Gaussian are possible, but

that will require the insertion of other neural networks - like V ariational Auto-Encoders (

VAEs) - to efficiently handle the marginalisation which will be too cumbersome otherwise.

Except for this precaution regarding the log-likelihood, the training proceed as already de-

scribed in the previous section. For each time step t the network is fed with the previous

network state hi
t−1 and the co-variate xi

t . The network output is mapped viaΨ (·) to the state

space model parameters, which are then used to compute the marginalized likelihood.

Prediction Prediction is carried out by means of Monte Carlo simulation. Figure 3.9b

depicts the procedure. The unrolling of the LSTM over the prediction range is alike that de-

scribed for the DeepAR architecture, with the only difference that the sample ẑi
t is not drew

from a distribution but rather returned by the underneath state space model. Quantiles of

interest - the median and ρ= 0.9 precisely (also called p50 and p90 in the paper) - are again

derived to have a measure of the prediction uncertainty.

3.3.3 Neural basis expansion analysis

Among the three SotA architectures presented in this chapter this is the only one which:

can be defined as a purely Deep Learning design; nonetheless it claims to be interpretable.

Navigating the network from a single block outward we find: the l-th block, the s-th stack

it belongs to, the collection of stacks forming the whole network. Figure 3.10 schematizes a

possible network’s arrangement.

The l-th block is made of a Fully Connected (FC) network, with a fixed number lFC of layers,

which outputs two sets of parameters θb
l and θ f

l :

h1
l = FC1

l

(
zl

)= ReLU
(
W1,T

l zl +b1
l

)
;

h2
l = FC2

l

(
h1

l

)
;

...

hm
l = FCm

l

(
hm−1

l

)
;

θb
l = LINEARb

l

(
hm

l

)
; (3.22)

θ
f
l = LINEAR

f
l

(
hm

l

)
. (3.23)

Parameters θ∗l are then fed to two basis expansion functions g b
l and g f

l .

In the architecture’s generic arrangement, g b
l and g f

l are set to be a linear projection of the

70

CHAPTER 3. DEMAND FORECASTING

Figure 3.10: Proposed N-Beats architecture, as reported in [ODPT21]. Fundamental blocks
are Fully Connected networks with ReLU non linear activation functions. Each block pre-
dicts the basis expansion coefficient both forward θ f (forecast) and backward θb (backcast
). Blocks are organized into stacks by means of double residual connections. Stacks can be
assembled together.

71

CHAPTER 3. DEMAND FORECASTING

previous layer output, i.e.

ŷb
l = g b

l

(
θb

l

)
= Wb

l θ
b
l +bb

l (3.24)

ŷ f
l = g f

l

(
θ

f
l

)
= W f

l θ
f
l +b f

l (3.25)

The output is twofold: a forward (forecast) signal ŷ f
l and backward (backcast) portion ŷb

l .

For the very first block - i.e l = 1 - zl = zt . For the following blocks - l = 2, . . . ,m - in the cas-

cade, zl = zl−1−ŷb
l−1. This is the first of two residual branches running through the network.

Residual connection had been firstly introduced by He et al. [HZRS16]. The intuition was

that it would have been easier to optimize the residual mapping than to optimize the orig-

inal, unreferenced mapping. As an extreme instance, if an identity mapping was optimal,

it would be easier to push the residual to zero than to fit an identity mapping by a stack of

nonlinear layers. Huang et al. [HLVDMW17] extended the principle introducing extra con-

nections from one stack to additional related stacks. The authors of the current architecture

re-used the same principles. Each block removes from its input the portion of the signal

which it can approximate (ŷb
l−1), saving some workload to its successors.

Blocks within the same stack can share the same g b
s and g f

s .

The next level - middle in the Fig. 3.10 - is dedicated to stacks. Requesting an interpretable

model, the shared basis expansion functions g∗
s can be structured to meet a priori choices:

Trend block Usual trend models are linear, logistic and polynomials. The last-mentioned

option had been chosen, constraining g b
s,l and g f

s,l to be a polynomial of degree p and

function of a (moving) window H

ŷtrend,∗
s,l =

p∑
i=0

t iθ∗s,l = Tθ∗s,l (3.26)

where t = [0,1, . . . ,H−2,H−1]T is the column time steps vector and

T = [
1,t ,t2, . . . ,tp

]
is relative matrix of powers.

Seasonality block A Fourier Series shapes the seasonal’s basis functions

ŷseas,∗
s,l =

bH/2−1c∑
i=0

cos(2πi t)θ∗s,l ,i + sin(2πi t)θ∗s,l ,i+bH/2c = Sθ∗s,l (3.27)

where S = [
1,cos

(
2πt

)
, . . . ,cos

(
2πbH/2−1ct

)
, sin

(
2πt

)
, . . . , sin

(
2πbH/2−1ct

)]
is the waves

forming matrix and t is the time vector already outlined in the trend block summary.

72

CHAPTER 3. DEMAND FORECASTING

The single stack output mimics the block’s one, with backcast and forecast signals:

ŷb
s = ŷb

s,m ;

ŷ f
s =

m∑
l=1

ŷ f
s,l ; (3.28)

In an interpretable architecture context only two stacks are instantiated, a trend stack fol-

lowed by a seasonal one.

In the end - outmost level in the reference figure -, the model output ŷ is obtained summing

together all the stack-level predictions ŷ f
s .

Training & Prediction There are few facts to report about the training process of this

architecture. To improve overall accuracy the researchers preferred an ensemble of models

over more popular alternatives, like dropout or L2-norm penalty. The models ensemble is

constructed starting from different windows of the input sequence - named lookback win-

dows - and one or more losses. The window’s lengths are dependent on the forecasting hori-

zon H. Six windows, and six models accordingly, had been used primarily in the work’s pre-

sentation LH = [2H,3H,. . . 7H]. If more than one loss is required, each model is trained on

each and every loss requested. The work had been centered mainly around MAPE, SMAPE

and MASE metrics. As a consequence, if all the lookbacks are trained over all the losses a

total of 18 models will be generated. Additionally the training is repeated a fixed number

of times performing a bagging procedure, procedure which includes models with different

random initialization. Forecasts from the ensemble are aggregating via median function. To

cite an instance a total of 180 models had been employed to achieve SotA results over the M4

dataset (6 lookbacks ·3 metrics ·10 repetitions). The set of trainable parameters Θ is made

of all the weight matrices W∗∗ and bias vectors b∗∗ of the various blocks and stacks, varying

with the kind of architecture requested. The intermediate forecasts covering the horizon H,

as well as the final one, is always available either at the final block in the chain or at stack

level, depending on the architecture’s kind.

To compare with probabilistic models like DeepAR and DeepSSM the authors had chosen

the Normalized Deviation metric (ND)

ND
(
zi

1:T, ẑi
1:T

)
=

T∑
t=1

∣∣zi
t − ẑi

t

∣∣∣∣zi
t

∣∣ (3.29)

which is equivalent to the 0.5-risk (p50).

73

CHAPTER 3. DEMAND FORECASTING

3.4 Research overview

As opposed to the state of the art just now introduced, we are going to review some of enter-

prises’ efforts into demand forecasting research. As we already stated the adoption pace of

AI models at large has increased overall across different industries, but Supply Chain man-

agement - and demand forecasting as a consequence - is one of the business assets with the

lowest AI acceptance. Different enterprises are committed to different models depending

on their field and the nature of their data. Hopefully it should be clearer at this point why.

As a case of study we focus on some French companies, active in various economic fields.

Électricité de France (EDF) is a mandatory mention in this brief review. Load forecasting is

crucial for the planning and operation of electric utilities. At national level the models used

in production are already achieving good performances; Gradient Boosting Models (GBMs

), based on tree-learning algorithms, are still the preferred choice. Nonetheless the intro-

duction of smart-meters to support a sustainable energy development and the flexibility

market moved the challenge to the demand forecasting at single household and grid level.

The latter would be inserted in a chain of correlated models to then back up operations. The

direct implication is that any chosen model at this level has to be: as adaptable as possible

- there are no two equals households -; complete training and prediction under the hour

- the canonical forecasting horizon at this level ranges from one hour to one week -; able

to provide consumption insights which will be translated into feedbacks for the customer.

In 2019 Gérossier [Ger19] proposed, in his PhD work carried out within the SENSIBLE 6

framework, a short-term forecasting model based on the Alternating Direction Method of

Multipliers (ADMM) [BPC+11]. Proposed by Boyd et al. in 2011, the ADMM algorithm is a

decomposition-coordination procedure which solves a complex convex optimization split-

ting the problem into smaller pieces which are easier to handle. Accordingly the forecast

made at sub-problem level will be coherent with that made at the upper level, and so on.

Gérossier used it to navigate from predictions at household level to that at grid level, as op-

posed to a global approximation or a bottom-up reconstruction. Load forecasting is without

any doubt one of the most studied field, especially in this time of transition. Nevertheless

even more up-to-date works 7 are revolving around hybrid solutions between classical and

AI models, state space models - in which some of the hybrid architectures could potentially

be categorized - and ensembles of (weak) models.

The most recent work found, strictly related to demand forecasting - made available online

6Storage ENabled SustaInable energy for BuiLdings and communitiE:
https://www.projectsensible.eu

7Search conducted among the publications presented on HAL:
https://hal.science/search/index/?q=demand+forecasting&rows=30&sort=producedDate_-
tdate+desc&docType_s=THESE+OR+UNDEFINED

74

https://www.projectsensible.eu
https://hal.science/search/index/?q=demand+forecasting&rows=30&sort=producedDate_tdate+desc&docType_s=THESE+OR+UNDEFINED

CHAPTER 3. DEMAND FORECASTING

in 2021 - is by Klibi et al. [KBDOAEA21]. They were forecasting sales for a cosmetic retailer,

using basket data to construct exogenous factors and ARIMAX to perform the forecast. A

year before Huard et al. [HGS20] used an ensemble of exponential smoothing and Holt’s lin-

ear trend methods to solve Cdiscount’s hierarchical demand forecasting problem. The en-

semble had been optimized via robust online aggregation, otherwise called prediction with

expert advice, to achieve coherency along the hierarchy. The Cdiscount’s dataset greatly

matched the peculiarities outlined in Sec. 3.1, recording daily sales of ∼ 620′749 products.

The researchers aggregated the sales by week and yield a forecast up to 6 weeks ahead. Back

in 2012, Rostami Tabar [RT13] proposed a temporal aggregation algorithm to better handle

forecast coherency and based the lowest level forecasts on ARIMA models.

The review of the available works designed in the industrial research is far from being ex-

haustive, despite that we can see a clear trend in it. The forecasting models have to be as

lightweight and explainable as possible, preferably providing probabilities insights on fu-

ture outcomes. Consolidating the concept, the forecasting task is a core task but it is not the

only one. It is deeply bounded to other processes which form a complex chain of decision

making mechanisms, and decision makers at different levels have to be able to understand,

investigate and possibly quickly modify the outcome of such models.

3.5 At Lokad

3.5.1 Envision

Envision 8 is the Domain-Specific Language (DSL) engineered by Lokad. The language is

specifically dedicated to the predictive optimization of supply chains. Unlike many script-

ing languages, Envision focuses on delivering a high-degree of correctness by design, which

means capturing as many issues as possible at compile time - the moment when the script

is compiled - rather than runtime - the moment when the script is run -. Capturing issues

at compile time is preferable because whenever the amount of processed data is sizable, a

runtime issue can take a long time (several minutes) to manifest itself causing productivity

and production reliability problems. While the Lokad platform includes many features be-

yond Envision, the bulk of Lokad’s capabilities are delivered through this DSL. Forecasting

utilities is one of these capabilities. Numeric calculations, flat files - commonly extracted

from clients’ systems -, machine learning and probabilistic forecasting are all supported

by Envision. Like SQL, Envision adopts array programming, processing whole columns at

once. The language is space sensitive, much like Python. In order to create a supply chain

8Technical documentation: https://docs.lokad.com/

75

https://docs.lokad.com/

CHAPTER 3. DEMAND FORECASTING

Listing 3.1: Envision: π approximation via Monte Carlo simulation

1 montecarlo 1000 with // approximate π value
2 x = random.uniform(-1, 1)
3 y = random.uniform(-1, 1)
4 inCircle = x^2 + y^2 < 1
5 sample approxPi = avg(if inCircle then 4 else 0)
6 show scalar "Approximation" with approxPi // 3.22

optimization app with Lokad, the Data Scientist - also named Supply Chain Scientist within

the company - is expected to write a script in Envision code. Results are presented through

Dashboards.

Although Envision is under a commercial license, the script in List. 3.1 can be ran accessing

the Lokad’s playground 9 which exposes a feature-limited version of Envision.

3.5.2 The forecasting engine evolution

Envision had been designed to evolve. Over 5 years of operations, the language underwent

more than one hundred incremental rewriting. Rewriting ensure that the company’s clients

benefit from the latest version of Envision without having to manually revise their scripts.

This allowed the forecasting engine to evolve at a brilliant pace, passing through different

stages, as is clear in Fig. 3.11. The temporal scale is obviously not rigorous, but gives a good

impression of when each stage has taken place. A significant amount of time and efforts had

been devoted to support the continuous fast paced progression of the forecasting engine

through the current work lifespan. We will briefly describe some of the critical points in the

following.

Brainscript TF.NET

Envision⇔Python

protosgd

autodiff

Figure 3.11: Lokad’s forecasting engine evolution.

9Playground: https://try.lokad.com

76

https://try.lokad.com

CHAPTER 3. DEMAND FORECASTING

Brainscript It was the model description language - hence a kind of domain specific lan-

guage - introduced by Microsoft together with its Cognitive Toolkit (CNTK) - no

longer actively developed, last major realead in August 2022 -, an open-source toolkit

for commercial-grade distributed deep learning. It described neural networks as a

series of computational steps via a static directed graph. The network was trained

through stochastic gradient descent (SGD). CNTK could be included as a library in

Python, C#, or C++ programs, or used as a standalone.

Working with a network defined in Brainscript and running it via CNTK was a cum-

bersome operation. If initially it was on par with TensorFlow feature-wise, it was not

able to keep the development progression of the competition and started to fall be-

hind. To cite an instance, to make use of the ADAM optimizer an in-house version

of CNTK had to be developed and deployed. Additionally some Deep Learning archi-

tectures - e.g. V ariational Auto Encoders (VAEs) - were impossible to code due to

missing features, e.g. random operations.

TensorFlow.NET10 Began as an independent .NET Standard project it is now supported

by Microsoft itself and accepted within the ML.NET infrastracture. The goal is to de-

ploy bindings for Google’s TensorFlow in C# and F# for developing, training and de-

ploying Machine Learning models. The main consideration being that Python code,

and especially Machine Learning frameworks like TensorFlow, resort to C calls for

high-demanding performance portion of the code. Even though the project sounds

promising, the problem is a dual rate development. The community behind Tensor-

Flow.NET can not keep the Google’s pace and not infrequently when a feature has

been properly bound, it has to be reworked to math a change in the new release of

the original code. The development delay was so large at some point that, to allow a

proper experimentation of the solution, we contributed to several binding implemen-

tations; from simple numerical and logical operations to the gradient of the batch

matrix multiplication.

Envision calls Python It was more an experiment run in collaboration with a single client.

Data coming from the client’s system would be digested by Envision before calling

Python externally. In this way any in between software proxy would be avoided. This

required a complex pipeline to be set to ensure data correctness. The experiment

was ran in parallel with the development and debugging of protosgd and could be

disposed after the latter’s deployment.

protosgd Ancestor of autodiff, it was the embryo of differentiable programming efforts at

Lokad. It was a Lisp-like DSL within the DSL. It required a dedicated compiler Please

10TensorFlow.NET repository: https://github.com/SciSharp/TensorFlow.NET

77

https://github.com/SciSharp/TensorFlow.NET

CHAPTER 3. DEMAND FORECASTING

refer to Sec. 4.5 for more details.

autodiff Current forecasting engine completely integrated within Envision. Please refer to

Sec. 4.5 for more details.

The temporal scale depicted in the figure, together with the different evolutionary steps

highlighted, should be of help in judging how much effort and time is required to a company

for select, test and integrate - and maybe fail and repeat - a new technological solution.

3.6 Summary

Demand time series are characterized by several oddities. First of all they are made only by

positive integer observations, i.e. the recorded quantities - the sales - are always greater or

equal to zero and non fractional. Due to this property they are also called count time series

(Sec. 3.1.2). Sales are only a proxy for the real value we are interested into, the demand.

Count time series are generated at large by processes which are intrinsically non-Gaussian,

and that are better approximated via discrete distributions like Poisson or Negative Bino-

mial. Depending on the application domain, it is not unusual to find demand time series

aggregated by distinctive attributes and organized in a hierarchical manner (Fig. 3.1). The

hierarchy in general reflects some more practical aspect of the business. A supermarket, for

example, would arrange its products into departments. Within each departments we would

find different product types. Among a type we would pick up the one specific product which

is aligned with our preferences. The supermarket itself could just be a store in a more global

retail chain.

Forecasting demand time series is not an easy task. Being filled with zeroes when no sales

are noted, they present a variability in both time - inter-demand intervals, i.e. the time

passed between two positive observations - and quantity - i.e. the observation’s magnitude

can vastly vary -. A measure of both variability is used to categorise the time series profile

into four major classes - Sec. 3.1.3 -: erratic, lumpy, smooth, intermittent. Lumpy time se-

ries are the worst-case scenario to forecast, being characterized by a double high variability.

On this kind of data, especially intermittent demand, we must pay attention in selecting the

correct metrics for training and evaluation: a) some of the traditional metrics indeed are not

tailored to demand data, since they can give infinite or undefined values; if the predictive

distribution is asymmetric - e.g. the Negative Binomial - the metric of choice could bias the

forecast towards zero, leaving us with no concrete business utility of the developed model.

A training approach based on the (log-) likelihood and Maximum Likelihood Estimation is

preferred in this context.

Section 3.2.1 and Sec. 3.2.2 introduced the parts dataset and the M4 dataset respectively. The

78

CHAPTER 3. DEMAND FORECASTING

former had been shared by a US car company selling spare components and made of only

lumpy and intermittent time series. The latter had been presented during the fourth edition

of the Makridakis Competitions and it is more heterogeneous. Both of them are made of uni-

variate, count time series. These two datasets had been chosen as common field to bench-

mark against the three State of the Art models: DeepAR [SFGJ19] and DeepSSM [RSG+18] -

both from Amazon, commercially available and potentially employable in a production en-

vironment - and N-Beats [ODPT21]. The last one is considered to be the SotA model thanks

to its great performance on the M4 dataset.

In the end we briefly reviewed the research efforts carried over by French companies and

how they are not really aligned with the literature found.

79

CHAPTER 3. DEMAND FORECASTING

80

Chapter 4

Automatic Differentiation &

Differentiable Programming

Contents

4.1 Introduction . 82

4.2 Forward Mode . 86

4.2.1 Dual Numbers . 86

4.3 Reverse Mode . 88

4.4 Automatic Differentiation . 90

4.4.1 On the computational subject 90

4.4.2 On the memory management 91

4.4.3 In Machine Learning frameworks 92

4.4.4 Differentiable Programming 95

4.5 At Lokad . 96

4.6 Summary . 97

Although the terms Automatic Differentiation (AD) and Machine Learning had been pulled

together only recently, the AD is a small but well established field already popular in various

scientific areas. It is a family of powerful techniques for automatic numerical computation

of functions’ derivatives. One of its main modes - the Reverse Mode - is a generalization of

the more popular backpropagation algorithm extensively used to train Neural Networks.

81

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

4.1 Introduction

Derivatives, both in the form of gradients or Hessians, are pervasive in the Machine Learn-

ing field and represent the drive for learning algorithms. Derivatives can be computed in

different ways, the most naïve one being manually working out the derivatives and code

them. Lets take the example presented in [GW08]

f (θ1,θ2) =
[

sin

(
θ1

θ2

)
+ θ1

θ2
−eθ2

](
θ1

θ2
−eθ2

)
(4.1)

and imagine that we are interested its derivative ∇ f (θ1,θ2) =
(
∂ f
∂θ1

, ∂ f
∂θ2

)
. Manually deriving

the function we reach

∇ f (θ1,θ2) =
(
∂ f

∂θ1
,
∂ f

∂θ2

)
= (4.2)(

[
1

θ2
cos

(
θ1

θ2

)
+ 1

θ2

](
θ1

θ2
−eθ2

)
+ 1

θ2

[
sin

(
θ1

θ2

)
+ θ1

θ2
−eθ2

]
,[

−θ1

θ2
2

cos

(
θ1

θ2

)
− θ1

θ2
2

−eθ2

](
θ1

θ2
−eθ2

)
+

[
sin

(
θ1

θ2

)
+ θ1

θ2
−eθ2

](
−θ1

θ2
2

−eθ2

)
)
,

where no simplification had been carried out. Manual differentiation is error prone and

requires a non-negligible amount of time. A way to automatise the process is symbolic dif-

ferentiation.

Representing the function f (θ1,θ2) symbolically, a symbolic differentiation engine will

parse it and recurrently apply transformations of derivation rules [BPRS18] to get a symbolic

expression for ∇ f (θ1,θ2). For sake of presentation we show only the symbolic representa-

tion for ∂ f (θ1,θ2)
∂θ2

∂ f (θ1,θ2)

∂θ2
=

[
− (θ1/(θ2 ∗θ2))∗ cos (θ1/θ2)− (θ1/(θ2 ∗θ2))−eθ2

][
(θ1/θ2)−eθ2

]
+[

sin(θ1/θ2)+ (θ1/θ2)−eθ2

][
− (θ1/(θ2 ∗θ2))−eθ2

]
which is exact, correct but not easy to digest. The formula can grow exponentially, depend-

82

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

ing on the original function itself, the order of the derivative requested and the number n of

dimensions involved; this problem is known as expression swell. The latter directly affects

also the technique’s computational complexity, which grows as the representation expands.

The formulae so far derived could be simplified, but the process can be tricky and time con-

suming.

Most of the time however we are interested in the numerical value of a derivative rather

than its mathematical expression. Numerical differentiation computes derivative’s numeri-

cal values through finite differences, evaluating the function at some point of interest

∇ f (θ1,θ2)|θ̄1,θ̄2

=
(
∂ f

∂θ1
,
∂ f

∂θ2

)
,

≈
(

f
(
θ̄1 +h

)− f
(
θ̄1

)
h

,
f
(
θ̄2 +h

)− f
(
θ̄2

)
h

)
.

The approach is not free of downsides. Computationally it scales poorly, requiring O (n) to

compute a n-dimensional gradient; practically it is easy to code but plagued by numerical

errors directly related to the choice of h: for small h a round-off error dominates; for large

h it is the truncation error which becomes dominant. As a matter of fact this technique is

used, in the majority of the cases, as a validation step in the implementation of more com-

plex techniques.

Both symbolic and numerical differentiation need to work with closed form expressions;

control flows with unknown number of iterations, conditional statements, etc. are not good

candidates to be differentiated by these means. Automatic Differentiation can compute

derivatives without the downfalls of the aforementioned techniques. The main idea is to

reduce calculations into elementary steps. Each step belongs to a finite set of operations

for which the derivatives are well known [Ver00, GW08, BPRS18]; we can include in this set

the arithmetic and binary arithmetic operations, sign switch, trigonometric functions, ex-

ponential and logarithm and so on. Griewank et al. [GW08] introduced a three-part notation

to schematize a function decomposition into atomic operations.

An arbitrary function f : Rn → Rm can be decomposed into atomic operations repre-

sented by intermediate variables vi such that

• variables vi−n = θi , i = 1. . .n for the input variables;

• variables v j , j = 1. . . l for the working intermediate variables;

• variables ym−k = vl−k , k = m −1, . . . ,0 for the output variables.

83

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

The numbering system is arbitrary as long as it is consistent. Table 4.1 shows the decompo-

sition steps for the example in Eq. (4.1); Figure 4.1 presents the same record in a graphical

way, highlighting dependency relations between intermediate variables.

Table 4.1: Evaluation trace for the function presented in Eq. (4.1).

Decomposed Original

v−1 θ1

v0 θ2

v1 = v−1

v0
= θ1

θ2

v2 = sin(v1) = sin

(
θ1

θ2

)
v3 = ev0 = eθ2

v4 = v1 − v3 = θ1

θ2
−eθ2

v5 = v2 + v4 = sin

(
θ1

θ2

)
+ θ1

θ2
−eθ2

v6 = v5 ∗ v4 =
[

sin

(
θ1

θ2

)
+ θ1

θ2
−eθ2

](
θ1

θ2
−eθ2

)
y1 = v6

Respectively the steps recorded in Tab. 4.1 and the graph in Fig. 4.1 are called evaluation

trace - or Wengert’s list [Wen64] - and computational graph [Bau74]. Computational graph

should not be a new term, as neural networks are usually visualized in this way. Assigning

values to θ1 and θ2 we can compute the value of y1 following the evaluation trace

The evaluation trace shown is not unique, we could have defined v2 as v2 = ev0 - and ac-

cordingly all the other steps - without changing the outcome. Contrary to the derivation in

the symbolic case, sub-expressions - hence intermediate variables - are reused avoiding the

expression swelling problem. Loops, branching, recursion and conditional statements, as

well as procedure calls, can be modelled via evaluation traces and the computational graph

going beyond the closed form constraint.

Evaluation traces are the AD’s core and we will see in the following how they are exploited in

the two main AD modes: Forward and Reverse mode.

84

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

Table 4.2: Evaluation trace for the function presented in Eq. (4.1).

Decomposed Original Value

v−1 θ1 1.5000
v0 θ2 0.5000

v1 = v−1

v0
= θ1

θ2

1.5000

0.5000
= 3.000

v2 = sin(v1) = sin

(
θ1

θ2

)
sin(3.0000) = 0.1411

v3 = ev0 = eθ2 e0.5000 = 1.6487

v4 = v1 − v3 = θ1

θ2
−eθ2 3.000−1.6487 = 1.3513

v5 = v2 + v4 = sin

(
θ1

θ2

)
+ θ1

θ2
−eθ2 0.1411+1.3513 = 1.4924

v6 = v5 ∗ v4 =
[

sin

(
θ1

θ2

)
+ θ1

θ2
−eθ2

](
θ1

θ2
−eθ2

)
1.4924∗1.3513 = 2.0167

y1 = v6 = 2.0167

v−1

v0

v1 v2

v3 v4 v5

v6

y1

Figure 4.1: Computational Graph.

85

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

4.2 Forward Mode

The forward mode, also known as tangent mode, is conceptually the most simple modality.

Considering the evaluation trace in Tab. 4.1 and the computational graph in Fig. 4.1, we

augment each line and each node with the derivative of the intermediate variable v j

v̇ j =
∂v j

∂θi
.

Applying the chain rule to each elementary operation in the evaluation trace we obtain a

tangent (derivative) trace as shown in Tab. 4.3. The forward mode is a natural generalization

of the Jacobian’s evaluation with n variables θi=1...n and m output variables yk=1...m . The

derivative ∂ f/∂θi with reference to θi is evaluating plugging the actual value of θi and setting

θ̇i = 1, leaving the rest at zero; the full Jacobian is then evaluated in n runs over the tangent

trace.

Table 4.3: Forward mode evaluating the derivative for the function in Eq. (4.1).

Decomposed Derivative (Tangent)

v−1 v̇−1 = θ̇1

v0 v̇0 = θ̇2

v1 = v−1/v0 v̇2 = v̇1 cos(v1)
v3 = ev0 v̇3 = v̇0ev0 = v̇0v3

v4 = v1 − v3 v̇4 = v̇1 − v̇3

v5 = v2 + v4 v̇5 = v̇2 + v̇4

v6 = v5 ∗ v4 v̇6 = v4v̇5 + v̇4v5

y1 = v6 ẏ = v̇6

Forward mode is straightforward and efficient for functions f : R→ Rm , i.e. when n = 1; in

this case indeed the full Jacobian can be computed in a single pass. The opposite is true for

f :Rn →R, i.e. when m = 1. In the latter case the Jacobian is defined as

∇ f =
(
∂ f

∂θ1
, . . . ,

∂ f

θn

)
but we still need n runs to compute it. In general the forward mode is preferred for cases

where n ¿ m.

4.2.1 Dual Numbers

A convenient way to link forward mode, automatic differentiation and derivatives is through

Dual Numbers. Dual numbers had been introduced as an extension to the Hamilton’s vec-

86

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

tor [Cli71] to consider rotation around any line in the tri-dimensional space. Clifford called

this extension rotors and the sum of such rotors a motor. He also needed to introduce a way

to go back and forth between rotors and vectors, he so introduction ω2 = 0. Formally dual

numbers follow the component-wise addition rule

(a +bω)+ (c +dω) = (a + c)+ (b +d)ω

and have a multiplication similar to that of complex numbers

(a +bω)∗ (c +dω) = ac + (ad +bc)ω+bdω2

= ac + (ad +bc)ω.

The link between differentiation and dual numbers resides in the Taylor series expansion.

Any polynomial with real coefficients

f (θ) = c0 + c1θ+ c2θ
2 +·· ·+cnθ

n

can be revised as a function of dual numbers

f (a +bω) = c0 + c1 (a +bω)+ c2 (a +bω)2 +·· ·+cn (a +bω)n

= c0 + c1a + c2a2 +·· ·+cn an + c1bω+2c2abω+·· ·+cn an−1bω

= f (a)+b
d f

da
ω.

Generalizing for any real function, the corresponding Taylor series expansion at θ0

f (θ) = f (θ0)+ f ′(θ0) (θ−θ0)+·· ·+ f (n)(θ0)

n!
(θ−θ0)n +O

(
(θ−θ0)n+1)

can be extended with dual numbers to

f (a +bω) =
∞∑

n=0

f (n) (a)bnωn

n!
(θ−θ0)n = f (a)+b f ′ (a)ω.

Setting b = 1 and recalling that ω2 = 0, we can evaluate the expansion at θ= a as f (a +ω) =
f (a)+ f ′ (a)ω. Under this formulation the addition of functions

f (a +ω)+ g (a +ω) = f (a)+ g (a)+ (f ′ (a)+ g ′ (a))ω,

their multiplication

87

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

f (a +ω) g (a +ω) = f (a) g (a)+ (f ′ (a) g (a)+ f (a) g ′ (a))ω,

as well as the chain rule

f
(
g (a +ω)

)= f
(
g (a)+ g ′ (a)ω

)= f
(
g (a)

)+ f ′ (g (a)
)

g ′ (a)ω

are satisfied. The higher-dimensional case where the gradient ∇ f is needed is a direct exten-

sion of the one-dimensional case where each components is associated with anω quantity.

4.3 Reverse Mode

If the forward mode is also known as tangent mode, its counter reverse mode is often called

cotangent linear or adjoint mode. Contrary to the forward mode which propagates the

derivatives from the input to the output, the reverse mode evaluates derivatives backward.

It augments the evaluation trace and the computational graph with an adjoint

v̄ j = ∂yk

∂v j
.

of the intermediate variable v j . The calculation is broken in two phases: a first pass is run

forward populating the trace with intermediate v j ’s values and recording the dependencies

of the computational graph; the second pass propagates adjoints v̄ j backwards, from out-

puts to inputs, to compute derivatives.

Table 4.4 lists the adjoint evaluation trace. Some of the adjoints are listed more than once,

in incremental steps. The incremental steps are just a convenient way to break the adjoint’s

contribution and align it with the line which generated it. Taking v4 as an example and look-

ing up Fig. 4.1, we see that v4 affects the output through v5 and v6, hence its contribution to

the change in y1 is given by

∂y1

∂v4
= ∂y1

∂v5

∂v5

∂v4
+ ∂y1

∂v6

∂v6

∂v4

or

v̄4 = v̄6
∂v6

∂v4

v̄4 = v̄4 + v̄5
∂v5

∂v4

88

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

Table 4.4: Forward mode evaluating the derivative for the function in Eq. (4.1).

Decomposed Derivative (Adjoint)

v−1 θ̄1 = v̄−1

v0 θ̄2 = v̄0

v1 = v−1/v0 v̄−1 = v̄1
∂v1

∂v−1

v̄0 = v̄0 + v̄1
∂v1

∂v0

v2 = sin(v1) v̄1 = v̄1 + ∂v2

∂v1

v3 = ev0 v̄0 = v̄3
∂v3

∂v0

v4 = v1 − v3 v̄1 = v̄4
∂v4

∂v1

v̄3 = v̄4
∂v4

∂v3

v5 = v2 + v4 v̄2 = v̄5
∂v5

∂v2

v̄4 = v̄4 + v̄5
∂v5

∂v4

v6 = v5 ∗ v4 v̄4 = v̄6
∂v6

∂v4

v̄5 = v̄6
∂v6

∂v5

y1 = v6 v̄6 = ȳ

in incremental steps.

Reverse mode is significantly less costly to evaluate than the forward mode and performs

better when n À m; taking again the edge case f : Rn → R, m = 1, the derivative can be

computed with a single reverse application in place of the n operations required by the for-

ward mode. The latter describes the derivation of a scalar-valued function with respect to a

large number of parameters, which is most known in the machine learning community with

the name of backpropagation. Reverse mode is indeed a generalization of backpropagation.

The cost for the efficient derivative evaluation is a higher memory’s waste, which can grow

proportionally - in the worst case - to the number of operations. How to improve storage

requirements is still an active research area [DH06, SP18].

89

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

4.4 Automatic Differentiation

A naïve implementation of automatic differentiation could result in prohibitively slow code

and excessively use of memory. Both actual implementation and memory management

need to be carefully thought to reach a good trade-off between the two. Over the years sev-

eral research groups active in the field lead to the introduction of different approaches for

both subjects. A comparison of libraries and packages demonstrating each approach is dif-

ficult and mostly empirical, mostly due to the tight relation between an approach and the

language in which it is implemented.

4.4.1 On the computational subject

Three are the principal approaches implementation-wise [vMBBL18]:

Domain Specific Language (DSL) A sub-language is created specifically to support

automatic differentiation. Any function meant to be automatically differentiated has

to be written in the DSL and there should be a one-to-one mapping between the DSL

and the host language, i.e. the DSL should support all the operations available in the

original code. A manual rewriting step is obviously required with the translation be-

ing as fast as the DSL matches the host language. The more the DSL moves away from

the original, the more the translation process will take time and be keen to errors. The

computational graph outlined by the DSL is statically defined and can potentially be

optimized ahead of time.

Operator Overloading (OO) is based on the host language’s capability to: extend

variables with a new type containing additional derivative information; overload func-

tions and operators to use these new types. This can be an elegant and powerful so-

lution, the main advantage being implementation easiness. The principal drawback

is an additional interpretation overhead: the adjoint program is dynamically con-

structed at each execution - i.e. we deal with a dynamic computational graph - and

requires an embedded interpreter, the last can interfere with debugging and perfor-

mance analysis. Moreover since the tracing operation happens at runtime, operator

overloading incurs overhead at each function call which can be particularly problem-

atic if the primitive operation is faster to evaluate than the tracing operation. Finally

operator overloading doesn’t allow ahead-of-time optimization since the approach is

not aware of the entire computational graph.

Source Transformation (ST) constructs a new source code for the adjoint program,

starting from the original program, in the same host language. Then the original and

the adjoint programs are interpreted and executed together. For this approach to be

90

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

effective the code has to be available in its entirety. As in the DSL case but contrary to

the OO one, the graph is statically defined; the path to be taken is chosen at runtime

depending on the input.

It is not uncommon to found solutions that mix two of the previous approaches, e.g. DSL

and ST.

4.4.2 On the memory management

Intermediate variables created over the tracing process need to be stored for later use. Three

are the leading memory schemes at the moment:

Tape and Retaping A global stack - called tape - is created to place the intermediate

variables. In the ST approach the tape is an actual stack, whereas in the OO case it is

a program trace which stores the executed primitives besides intermediate variables.

The primal program writes to the tape over the forward pass, while the adjoint pro-

gram reads from the tape during the backward pass. A downside of tape-based imple-

mentation is the tape’s construction at runtime, which complicates the optimization

process. Moreover it can represents a memory bottleneck, since each AD sweep will

have its own tape associated. An intuitive example is the Jacobian’s computation al-

ready discussed in Sec. 4.2; n transitions will be performed to compute the partial

derivative, consequently n tapes will be created. In this case a technique termed re-

taping[Mar19] can be employed: rather than reconstructing the computational graph

at each sweep, information about the structure and intermediate variables are stored

to be reused in the successive passages. Of course re-taping can be effective when

the computational graph does not change from evaluation to evaluation, i.e. if no

true conditional statements are involved in the target function.

Checkpointing had been developed as a trade-off between computing performance

and memory usage, in particular it can mitigate memory usage peaks [RLG98, DH06,

Mar19]. The underlying idea had been presented by Griewank [Gri92] who observed

how the reverse mode does not need to record the entire computation. He suggested

how the reverse mode could be implemented following a divide and conquer style:

the computation flow is subdivided into sections, at appropriate checkpoints; the last

section - from the second to last to the last checkpoint - is recorded and the corre-

sponding derivatives are taken; finally the computation is resumed from the third to

last to the most recent checkpoint. An immediate question is where the checkpoints

should be placed. As argued by Hascoet et al [HP13] there is no optimal placement;

91

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

if the program can be split into sequential computational steps the binomial parti-

tioning scheme presented by Griewank [Gri92]. Checkpointing is also related to AD

parallelism; if we can split the program into independent sections, it means that we

can evaluate each section separately.

Region Based Memory Allocating and freeing memory one intermediate variable at

the time can be excessively costly. Region Based Memory management [GA01, Gay06]

focuses on regions - stacks - which can be dedicated to a derivative calculation: inter-

mediate variables are allocated on a custom stack element-wise; when the derivative

had been evaluated, the entire stack is destroyed and the associated memory is freed.

4.4.3 In Machine Learning frameworks

Automatic Differentiation started to appear in Machines Learning frameworks in 2005, with

TensorFlow and Pytorch trying to get the lead of the charge. Early TensorFlow opted for a

DSL in which the user could expressly define the computational graph. Each variable and

function should had been marked expressly and the AD would perform the derivation on

the static graph so defined, as shown in List. 4.1.

Listing 4.1: Computational graph for ReLU3’s evaluation, defined in the TensorFlow’s DSL.

1 import tensorflow as tf
2
3 x = tf.Variable(3.14)
4
5 with tf.GradientTape() as tape:
6 out = tf.Condition(
7 x > 0,
8 lambda: tf.math.pow(x, 3),
9 lambda: 0
10)
11
12 grd = tape.gradient(out, x).numpy()

Requiring the user to personally specify the graph however was harmful for flexibility. Con-

trol flow constructs would be limited to those that could be defined statically, for exam-

ple a tf.Condition(<condition>, <then_branch>, <else_branch>) function statement

is different from a conditional if ... then ... else code because the first is semanti-

cally equivalent to calling both branches and then select the actual branch based on the in-

put. TensorFlow had a domain-specific tensor-oriented compiler named Accelerated Linear

Algebra (XLA) to produce an intermediate representation (IR) and simplify the computa-

tional graph. With TensorFlow Eager, a certain degree of dynamic control flows support was

added. A function called in eager mode will be immediately executed; loops and conditional

92

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

Listing 4.2: Computational graph for ReLU3’s evaluation, defined in Pytorch.

1 import torch
2
3 # Before it was torch.Variable()
4 x = torch.tensor([3.14], requires_grad = True)
5 relu3 = torch.where(x > 0, torch.pow(x, 3), 0)
6
7 relu3.backward()

statements will be unrolled and the resulting sub-graph returned as soon as everything had

been made static. This of course added an additional computation overhead for three main

reasons: long and complex loops will put the execution in idle until fully evaluated; the cor-

responding sub-graph could be a one-shot evaluation, being discarded immediately and

never saw again, depending on the inputs; XLA optimizations could not be applied anymore

because complete information on the computational graph are lost. Eager mode also failed

the community’s performance expectations, pushing researchers and practitioners towards

alternative solutions.

Pytorch, on the other hand, preferred an OO approach, providing some level of control flows

since the very beginning via ad-hoc constructs. It came first in unrolling loops and condi-

tional statements but backed up the computational overhead with a huge catalog of heavily

optimized functions which hid the additional burden 1 when optimization involved huge

models, as in the Deep Learning case. With smaller optimization problems, the raised com-

putation time would be appreciable again.

Comparing List. 4.1 and List. 4.2 highlights another difference in the computational graph

construction between the two packages: TensorFlow had a define-and-run construction -

first we build the graph, then we run the computation - while Pytorch pointed at a define-

by-run composition in which the data coming into the model would select the outcome.

Successive solutions focused efforts on expanding the domain of supported functions. Ap-

plying operator overloading and enclosing the numpy package [Oli07], Autograd [MDA15]

was a first independent attempt to widen automatic differentiation support to Python, and

consequently to third-party libraries e.g. scipy [JOP01]. The package got so much a foothold

in the machine learning community that Autograd became a synonymous of automatic dif-

ferentiation for many. Being a wraparound numpy, Autograd’s performance were deeply

bounded to those of the original scientific computing package; furthermore the developing

team scheduled but never delivered support for GPUs, which set for constant downfall of

1Where do the 2000+ PyTorch operators come from?: More than you wanted to know

93

https://dev-discuss.pytorch.org/t/where-do-the-2000-pytorch-operators-come-from-more-than-you-wanted-to-know/373

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

Listing 4.3: Computational graph for ReLU3’s evaluation, defined in Pytorch.

1 using Zygote
2
3 # An alternative and valid solution
4 # would be
5 # relu3(x) = ifelse(x > 0, pow(x, 3), 0);
6 relu3(x) = x > 0 ? pow(x, 3) : 0;
7
8 x = 3.14;
9

10 Zygote.pullback(relu3, x);

usages. Part of the Autograd’s developing team moved to Google and in the 2018 launched

JAX: following the same philosophy behind Autograd, JAX put Autograd and XLA near each

other. JAX too was essentially a wrapper around numpy, but added another level of abstrac-

tion introducing an extra IR, on which AD is performed, which is then lowered to the XLA.

As in the TensorFlow case, dynamism was introduced via ad-hoc function calls. JAX, with its

functional soul, expected to work on pure functions - i.e. functions that don’t do side effects

on their inputs - and this imposed some restrictions on the code which can be automatically

differentiated, e.g. array mutation through indexing could not be supported.

All the solutions so far outlined operated AD on an IR which can’t be optimized, or opti-

mized up to a certain degree but before the compiler can run its own optimizations. Re-

cently projects like Zygote.jl [Inn19] - for Julia - and Enzyme [MC20] - a cross-language

solution - committed to work on an IR which could be directly digested by an underlying

compiler. Zygote used a different strategy to trace the variables and construct the compu-

tational graph applying Static Single Assignment (SSA) [CFR+91], a generalization of the

Wengert’s list in which each and every variable is assigned exactly once. Zygote extended

the Julia’s dynamic semantics with syntactic AD transformations; the IR is then be fed to the

LLVM compiler. Potentially Zygote has the ability to support true control flow constructs -

i.e. not limited to some ad-hoc function calls - as well as array mutation; however the de-

velopers team brought some constraints to the table, e.g. not supporting array mutation,

when it came to release the package, in order to ease the implementation. Enzyme on the

other hand was conceived as a cross-language, cross-platform plugin for the LLVM compil-

ing infrastructure itself. Operating directly on the LLVM IR, the LLVM’s optimizations can be

applied straightforward to the adjoint program. That being said, Enzyme can be applied to

any LLVM compiled language such as C++, Rust and Swift. Both Zygote and Enzyme allow a

definition of the model in plain Julia, as shown in List. 4.3 and List. 4.4, without recurring to

any DSL or additional IR.

94

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

Listing 4.4: Computational graph for ReLU3’s evaluation, defined in Pytorch.

1 using Enzyme
2
3 # An alternative and valid solution
4 # would be
5 # relu3(x) = ifelse(x > 0, pow(x, 3), 0);
6 relu3(x) = x > 0 ? pow(x, 3) : 0;
7
8 x = 3.14;
9 xshadow = 1;

10
11 # Reverse: specifies reverse mode AD
12 # Active: take derivative w.r.t. this
13 # variable
14 Enzyme.autodiff(Reverse, relu3, Active(x));

4.4.4 Differentiable Programming

With the term Differentiable Programming we address a novel programming paradigm in

which models are seen as a concatenation of parameterized differentiable blocks. Each

block can be defined in a recursive way; it can either be an atomic operation - e.g. a math-

ematical operator - or a concatenation of blocks. The term had been coined by Prof. Yann

Lecun2, back in 2018, to describe a super-set of the Deep Learning field in which programs,

constructed via differentiable blocks and relative parameters, could be optimized using well

known gradient-based optimization techniques. Prof. Lecun noted how popular machine

learning frameworks were working to help users in defining neural networks in procedural

data-dependent way, adding support for loops and conditional controls - as we outlined

in the previous section - and how neural networks were evolving towards a more dynamic

functional version of themselves. From this point of view, NNs match the definition of al-

gorithms and, as we move AD systems from an abstraction level to an intrinsic feature of

the language - or even deeper of the compiler - we can also imagine a shift in designing

specialized chips for AI.

2https://www.facebook.com/yann.lecun/posts/10155003011462143

95

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

Figure 4.2: Differentiable programming includes neural networks, but more broadly, ar-
bitrary programs which use gradient-based optimization to approximate a loss function.
Probabilistic programming [CGH+17, GGS19, THT+14] is a generalization of probabilis-
tic graphical models which uses Monte Carlo methods to approximate a density function.
Source: [Con21].

4.5 At Lokad

Listing 4.5: Envision: ReLU3 implemenation.

The keyword autodiff directly marks a function as differentiable. The ADSL language will

automatically take care of the derivative if the function is used in an autodiff block

1 def autodiff pure relu3(x : number) with
2 return if x > 0 then x^3 else 0

Differentiable programming and automatic differentiation represent the sixth generation of

the company’s forecasting engine. The first attempt, named protosgd, was a DSL within En-

vision. The sub-DSL was a Lisp-like language equipped with a standalone compiler to lower

the representation, following a ST schema. For the memory management a tape-based im-

plementation, with a re-taping option, had been preferred over the others. The successor of

this prototype, and actual solution used in production, had been called autodiff and it has

been the main topic for another PhD thesis conducted at Lokad.

Despite its name which recalls the Python package, it is more akin to most of the Zygote’s

and Enzyme’s basic principles. The model can be specified completely in plain Envision, the

SSA rule is employed over computational graph’s construction and it is perfectly integrated

into the language’s compiler. Contrary to Zygote, array mutation is allowed. Dissecting En-

96

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

Listing 4.6: Envision: simple linear regression with autodiff.

1 table T = with
2 [| as X, as Y |]
3 [| 1, 3.1 |]
4 [| 2, 3.9 |]
5 [| 3, 5.1 |]
6 [| 4, 6.0 |]
7
8 autodiff T with // automatic differentiation
9 params a auto // 1st parameter

10 params b auto // 2nd parameter
11 return (a * T.X + b - T.Y)^2 // loss for the stochatic gradient descent
12
13 show scalar "Learned" a1c1 with "y ~ \{a} x + \{b}"

vision, autodiff can be seen similar to Zygote. Envision indeed comprises circa ten differ-

ent languages, each with its own IR, all developed in-house; the one dedicated to autodiff

takes the name of ADSL 3 [Pes21]. Hence we have a chain of source transformation before

reaching the final and executable one, ADSL being one of the many. Taking Envision as a

whole autodiff is alike Enzyme, being its dedicated sub-language perfectly embedded into

the compiler and subject to the latter optimization rules.

4.6 Summary

The chapter presented Automatic Differentiation reviewing its main modes, Forward (Sec. 4.2

) and Reverse (Sec. 4.3), and all the relevant associated definitions.

Successively the major solution for both the computational requirement and the memory

management had been presented respectively in Sec. 4.4.1 and Sec. 4.4.2 together with how

these solutions are reflecting into mainstream AD frameworks like Pytorch and Tensorflow

(Sec. 4.4.3). The emerging Differentiable Programming paradigm, offspring of AD and Ma-

chine Learning, had been briefly summarised in Sec. 4.4.4

Finally in Sec. 4.5 we had shortly outlined how automatic differentiation and differentiable

programming had been embedded into Lokad’s workflow.

3ADSL repository

97

https://github.com/Lokad/Adsl

CHAPTER 4. AUTOMATIC DIFFERENTIATION & DIFFERENTIABLE
PROGRAMMING

98

Chapter 5

Probabilistic exponential smoothing

for demand forecasting

Contents

5.1 Introduction . 99

5.2 An LSTM analogy . 100

5.2.1 Context & state vectors . 101

5.2.2 Operators . 103

5.3 Model . 106

5.3.1 Parameters, encoding & initialization 107

5.3.2 Multiple seasonality . 109

5.3.3 Shared seasonality . 109

5.3.4 Likelihood model . 110

5.3.5 Training . 111

5.3.6 Prediction . 112

5.4 Results . 114

5.1 Introduction

The work presented in this thesis is focused on the univariate time series, probabilistic fore-

casting problem. The model had been derived from the well known Holt–Winter model but,

99

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

contrary to its ancestor, it can accommodate multiple seasonality as well as different inter-

action modalities between its components. As discussed in Sec. 5.3.2, seasonality can be

shared among related time series and learnt jointly. The most commonly used seasonality,

or combinations of them, are listed in Tab. 5.1.

Table 5.1: Seasonal granularity: for each frequency we can initialize from one to several
frequency-dependent seasonal profiles (marked with * in the table). Abbreviations stand
for: Hour-of-the-Day; Day-of-the-Week; Day-of-the-Year; Week-of-the-Year; Month-of-the-
Year; Quarter-of-the-Year

Granularity

Frequency HoD DoW DoY WoY MoY QoY

Hourly * *
Daily * * *
Weekly * *
Monthly *
Quarterly *

An interesting property of the model presented is the direct mapping between business re-

quirements and model’s parameters. We will discuss this aspect further in Sec. 5.3. The

architectural design allows to externally pass the model’s parameters, allowing for a later

inspection and modification (if needed). This embrace the Differentiable Programming

paradigm and the company’s DSL approach.

Section 5.2 is going to dissect the popular Holt–Winter model to derive an analogy between

the current work and the LSTM cell. This parallelism will help the presentation of the various

fundamental operations which thrust our model. Section 5.4 shows the accuracy metrics

over the two datasets already presented, namely parts and the M4 Hourly.

5.2 An LSTM analogy

Exponential Smoothing family’s equations (Sec. 2.3.2) are recurrent, i.e. auto-regressive, by

design. We report in the following the (slightly modified) Holt-Winter method with additive

trend and multiplicative seasonality

100

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

σf

X

Forget Gate

σi tanhi

X

+

Input Gate

σo

X

tanh

Output Gate

ht−1

ct−1

xt

ht

ht

ct

Figure 5.1: Basic LSTM cell as already presented in Fig. 2.7. The three gates - namely forget ,
input and output gate - are highlighted.

lt = α
zt−1

st−m
+ (1−α)

(
lt−1 + tt−1

)
,

tt = β
(
lt − lt−1

)+ (
1−β) tt−1,

st = γ
zt−1

lt−1 + tt−1

+ (
1−γ)

st−m

ẑt+H|t =
[
lt + (H+1) tt

]
st+H−m ,

(5.1)

with: α, β and γ smoothing factors associated to level l∗, trend t∗ and seasonality s∗ re-

spectively; m the seasonality period and H = 0,1, . . . the forecasting horizon. The method

had been chosen for convenience, since it presents all the useful operations to support the

coming explanation.

5.2.1 Context & state vectors

Searching for similarities between the neural architecture and the method, the previous

time step values stand out. They are directly related to their successors and updated at

each time step. We can therefore collect them into a single vector which can be called state

vector, and labelled accordingly as

101

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

ht−1 =
[
z̃t−1, lt−1, tt−1

]
,

with the addition of z̃t−1 value which had been introduced to keep track of the input values

zt as the system evolves over time.

Despite the indexes also st−m is the immediate predecessor of st , however it has to be treated

differently. Imagine to have a monthly seasonality with m = 12. The seasonal factor s13

would be a function of s1, s14 = ωm

(·, s2

)
, . . . , s24 = ωm

(·, s12

)
, . . . and so on and so forth in

a circular manner. Consequently seasonal values computed at time t have to be stored for

later use at time t +m and we need a way to stock them. Without loosing generality we

can set H = 0 - i.e. we ask for the actual value’s prediction, given the past state - since, for

any given H, the Holt-Winter method will carry on the prediction step by step - as an LSTM

would do - but without updating internal components. The seasonal information are indeed

projected over a longer time span than those enclosed in the state, in a similar fashion of a

context vector. We can therefore imagine that our context vector is given by

ct−1 =
[
s1, s2, . . . , sm

]
.

Generalizing we could write for t = (m +1) , (m +2) , . . ., s[t−(mbt/mc)] =ωm

(·,ct−1

)
. The ωm (·)

operator acts like an indexing function, selecting the right seasonal factor to be used. The

index however is time-dependent, but there is no such information involved at the moment.

We proceed introducing the exogenous variable xt to provide temporal data. The exogenous

variable could be either an integer or a calendar information, e.g. a week or a date. Therefore

ωm (·) can be written as

ωm

(
xt ,c

)=

eT
(xt mod m)c if xt ∈ Z

eT
mc if xt ∈ Z∧ (

xt mod m
)= 0

ωm

(
toIndex

(
xt

)
,c

)
otherwise

(5.2)

where e j ∈Rm is the base vector with the j -th element - j = 1, . . . ,m - set to 1, and toIndex(·)
is any function that maps a calendar information to an index, e.g. dayOfWeek(·). Similarly

we can write the inverse indexing function

ω−1
m

(
xt , s

)=

e(xt mod m)s if xt ∈ Z

em s if xt ∈ Z∧ (
xt mod m

)= 0

ω−1
m

(
toIndex

(
xt

)
, s

)
otherwise

(5.3)

The system of equations 5.1 can consequently be rewritten as

102

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

5.2.2 Operators

Inspecting the Holt-Winter model we can recognize two main operations.

Scaling Either additive or multiplicative this operator is responsible for the extraction of

the seasonal component from the input values, such that the output one is purged by sea-

sonal effects. In Eq. (5.1) we have three of such operations, one for the level, one for the

seasonality and one for the output value. When also the trend is multiplicative, we would

have one additional operation.

Applying inversely the scaling operation, seasonal effects previously removed are restored.

This is the case for ẑt+H|t for example.

S (z, s) = z

s
, (5.4)

S−1 (z, s) = z · s, (5.5)

where z and s are a generic input and a generic seasonal factor respectively.

Smoothing The three structural components are governed by an exponential smoothing

process accepting different inputs, but sharing the same structure

〈new_value〉 =〈smoothing_factor〉 · 〈input〉+(
1−〈smoothing_factor〉) · 〈previous_value〉 .

Formally

ES (α, z, v−1) = αz + (1−α) v−1. (5.6)

where again α, z and v had been used to identify generic function’s inputs. The number of

smoothing operators is directly related to the number of structural components.

Using the so far introduced operations and vectors, Eq. (5.1) becomes

103

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

z̃t = zt (5.7)

lt = ES
(
α, Sα

(
z̃t−1,ωm

(
xt ,ct−1

))
, lt−1

)
(5.8)

bt = ES
(
β,

(
lt − lt−1

)
,bt−1

)
(5.9)

ẑt = S−1 [(
lt + tt

)
,ωm

(
xt ,ct−1

)]
(5.10)

ct = ct−1 ⊕ω−1
m

[
xt , ES

(
γ, Sγ

(
z̃t−1,

(
lt−1 + tt−1

))
, ωm

(
xt ,ct−1

))]
(5.11)

where ⊕ is the element-wise addition.

Three gates are distinguished inside the LSTM cell in Fig. 5.1: a forget gate, an input gate

and an output gate. Each gate is composed by one or more operations to fulfill its task. The

LSTM’s input gate filters the combined information from both the current input xt and the

state ht−1 to then update the current context vector ct−1, producing the new ct . Looking at

the above set of equations, Eq. (5.11) proposes a similar behaviour. Indeed the context’s

value selected via ωm (·) is updated through a smoothing operation, driven by the factor γ,

dependent on the previous state’s values.

Equations (5.7)–(5.10), grouped together, act similarly to an output gate. The latter’s scope

is to establish how much the current cell should influence the output. Taking information

coming from both the state vector and the context vector, it updates the internal represen-

tation of the model which is finally passed to the next time step. Simultaneously, the current

prediction is emitted.

The last one is the forget state. Its job is to decide if the context vector should be retained

for the current iteration or flushed. No operations could be related, in our opinion, to a po-

tential forget gate except if, in the current setting, we think about Eq. (5.11) as a blending

between a forget and input gate.

The same reflections hereby exposed can be applied to any method belonging to the ES fam-

ily. To cite an instance, a SES can be derived: initializing t1 either at zero or one - depending

if the trend is additive or multiplicative - and setting β = 0 (to always propagate the initial

value); initializing all the factors st either at zero or one - depending again if we are dealing

with an additive or multiplicative seasonality - and setting γ = 0 (to always propagate the

initial value). Figure 5.2 depicts the “cell” characterized thus far.

The analogy helped the explanation of the various component contained in our model and

track the data flow. However, we restrained ourselves from calling it a proper cell due to how

we treat and pass the model parameters. Without lowering into implementation details, to

instantiate a common RNN cell we will specify some hyperparameters, like the dimension

of the weights matrix W and bias vector b. Once the cell had been initialized, its parameters

are held within the cell itself. Our approach follows more a functional design, passing ex-

104

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

ω
m

z
it ,

x
it

≡

x
it

S
α
(·)

E
S
(α

)

h
it−

1

c
it−

1

z
it

E
S
(β

)
+
/·

S
−
1
(·)

ẑ
it

S
γ
(·)

E
S
(γ
)

ω
−
1

m ⊕
c
it

h
it

z̃
it

l it
t
it

O
u
tp

u
t
G
a
te

F
o
rg

e
t
G
a
te

Figure 5.2: Intersecting edges represent a concatenation or any gathering function of the
input. The specify a “copy” of the input, e.g. when the input is fed to multiple branches,
or a “split”. The ≡ is the identity operator. The ⊕ is an element-wise update operation
of the context vector. The fictional gates are also highlighted. The fictional gates are also
highlighted.

105

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

ternally all the parameters. This is aligned with the Differentiable Programming paradigm

and the company’s DSL approach. Parameters inspection and modification are also easier

to accomplish in this context.

5.3 Model

ωm

zit, xi
t

≡

xi
t

Sα (·) Smooth

hi
t−1

cit−1

zit

S−1 (·)

ẑit

Update

⊕ cit

hi
t

z̃it

Smoothω

Sα(·)

zit, xi
t

S−1(·)

ẑit

c

hi
t−1

c

hi
t

Figure 5.3: (Left) Compressed view of the fictional cell shown in Fig. 5.2. The two smooth-
ing operations for level and trend respectively had been unified under the Smooth block.
Seasonal related operations had been gathered under the Update block. (Right) When the
seasonality is shared the context is no more updated at single time series level, hence the
Update block is factored out.

The fictional cell outlined in Fig. 5.2 is equivalent to a single time series model. A more com-

pact visualization is shown in Fig. 5.3 (Left), where the level and trend smoothing processes

had been unified under the Smooth block, while the ensemble of seasonal related operations

had been collapsed into the Update block. Given the dataset D=
{

zi
t0:T

}N

i=1
the i -th cell will

be associated with the i -th time series as well as its set of parameters Θi = {
Ai ,Gi

}
. The

latter will be made of: smoothing factors Ai = {
αi ,βi ,γi

}
; seasonal factors

Gi =
{

s(i ,g1)
1 , . . . , s(i ,g1)

mg1
, s(i ,g2)

1 , s(i ,g2)
mg2

, . . . , s

(
i ,gng

)
mgng

}

=
{

s
i ,g1
1:mg1

,s
i ,g2
1:mg2

, . . . ,s
i ,g1
1:mg1

}
;

or any intersection of them, depending on the structure of the model - e.g. SES, DES, Holt–

106

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

Winter - and the number of seasonality ng required. For instance, a model with no trend

requesting a Week-of-Year seasonality in addition to an Hour-of-Day one will receive a set

Θi

Θi =
{
αi ,γi ,s(i ,HoD)

1:24 ,s(i ,WoY)
1:52

}
.

The aggregation of all Θi , make the whole set Θ of our model parameters. Exogenous vari-

ables xi
t0:T are supposed to be known over the whole i -th time series’ history. They can be

item-dependent, time-dependent or both. In general any co-variate xi which does not vary

with time can be made time-dependent, repeating it along the time dimension. This dis-

tinction has more a practical importance rather than theoretical one, for instance when the

co-variate represent a categorization of the i -th item. Both DeepAR [SFGJ19] and DeepSSM

[RSG+18] incorporate temporal and categorical information into the exogenous variables in

a similar manner.

5.3.1 Parameters, encoding & initialization

As already discussed in Sec. 3.3.2 for DeepSSM [RSG+18], constraints are cast upon the sets

Ai and Gi .

Smoothing factors Historically any smoothing factor in the ES framework has been ex-

pected to lie in the range [0,1]. In Hyndman et al. [HA21] different boundaries are reported

for β and γ, specifically: 0 ≤ β∗ ≤ 1, β = αβ∗; 0 ≤ γ ≤ (1−α). These boundaries ease the

computation of the exponential smoothing methods in the state space form, but we found

that the ordinary ranges work well in practice. For each generic smoothing factor αi ∈ A, we

introduced the quantity α̃i such that:

αi = (ub − l b)
1

1+exp
(−α̃i

) + lb.

The lower bound lb and upper bound ub are set to 0.05 and 0.95, respectively.

No specific mechanisms had been put in place for the initialization of this class of param-

eters. Empirically αi = 0.5, βi = 0.3 and γi = 0.1 worked well as initial guess. At large, any

value ≤ 0.5 is acceptable in order to have a certain dynamic within the model, without pres-

suring it to use information coming from the observation rather than its previous condition.

The latter represents also the business-wise value of this family of parameters, discerning if

the past values or the current one describe better the time series behaviour.

107

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

Seasonal factors In theory, the seasonality is expected to be a stationary repeating pat-

tern. Empirically we expect an additive seasonality to sum up to zero, or sum up to the

period m if multiplicative. To control the magnitude of the patterns and their shape, we

again employed some proxies. For any seasonality s̃i ,g
1:mg

∈ G we have:

Additive

si ,g
t = s̃i ,g

t − s̄i ,g , t = 1, . . . ,mg ;

with s̄i ,g = 1/mg

∑mg

t=1 si ,g
t average of the seasonal factors.

If there is enough data available, seasonal factors can be initialized averaging all the

observations for a given time instant within the period. For example, having 4 full

years of a monthly time series - mg = 12 -

sMoY
1 = 1

4

(
z1 + z13 + z25 + z37

)
,

sMoY
2 = 1

4

(
z2 + z14 + z26 + z38

)
,

. . .

sMoY
12 = 1

4

(
z12 + z24 + z36 + z48

)
.

Such a method can be cumbersome for huge datasets. To initialize the factors we used

a sinusoidal function with a wavelength proportional to the period mg . Technically,

any harmonic function which can sum up to zero over
[

1,mg

]
can be used to initialize

the parameter, e.g. a sawtooth function.

Multiplicative

si ,g
t = log

1+exp

 s̃i ,g
t mg

s̄i ,g

 , t = 1, . . . ,mg ;

where s̄i ,g = ∑mg

t=1 si ,g
t sum of the seasonal factors. In this case the initialization is

quite straightforward, with each and every factor taking the value 1/mg .

Factors normalization is not mandatory but we found that it helped when dealing with inter-

mittent data. Such constraints help the training process into shaping the seasonality profile.

We also found that additive factors initialized with a sinusoidal hardly exited - or completely

failed to exit - such regime, thus we preferred a sawtooth function.

108

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

5.3.2 Multiple seasonality

Contrary to the standard ES methods, from which the model is derived, it has room to ac-

commodate multiple seasonality.

For sake of clarity we limited the function ωm and the context vector c∗ to the single period

m. However the respective definition can be generalized to a multiple seasonality scenario.

Assume si ,g =
{

s(i ,g)
1 , s(i ,g)

2 , . . . , s(i ,g)
mg

}
the seasonal factors vector belonging to seasonality

g - e.g. hourly, weekly, monthly - with period mg , e.g. 24, 7, 12. The context vector c∗

could either become a context matrix Ci
[∗,(Mg×ng)] =

[
s(i ,g1)T,s(i ,g2)T, . . . ,s

(
i ,gng

)
T
]

, with Mg =
max

{
mg1

, . . . ,mgng

}
, or an extended version

ci
∗ =

{
s(i ,g1)

1 , . . . , s(i ,g1)
mg1

, s(i ,g2)
1 , . . . , s(i ,g2)

mg2
. . . , s

(
i ,gng

)
mng

}
.

Accordingly ωmg∗
is going to select either a column of Ci∗ or the starting offset within ci∗,

before applying the indexing. Consequently the number of forget (input) gates in our cell

will linearly increase with the number of seasonality.

Comparing with the SotA models, we can not exclude that the latter are able to model mul-

tiple seasonality. Even so the architecture design does not allow for a discrimination of the

single seasonality. Both DeepAR [SFGJ19] and DeepSSM [RSG+18] delegate the approxi-

mation of trend and seasonality - and complex components at large - to the global LSTM.

Accessing the recurrent network weights is not enough to extract the desired information.

N-Beats [ODPT21], on the other hand, claims interpretability and make no use of temporal

data. It is true that the interpretable architecture can output a seasonality and a trend com-

ponent, nonetheless there seem to be no way to isolate the different seasonality - if present

- from the Fourier series. In our case instead each and every seasonality is directly mapped

to a sub set of the model’s parameters and possesses a real business significance.

5.3.3 Shared seasonality

Having shown how multiple seasonality can be contained within the context array, we can

also imagine to pass the same collection of seasonal factors to related time series, actively

learning them jointly. Either if the context vector had been transformed into a context ma-

trix or an extended version of itself, we can drop the i -th index to specify shared factors

C∗,(Mg×ng) =
[

s(g1)T,s(g2)T, . . . ,s

(
gng

)
T
]

,

c∗ =
{

s(g1)
1 , . . . , s(g1)

mg1
, s(g2)

1 , . . . , s
g2
mg2

. . . , s

(
gng

)
mgng

}
.

109

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

If the i -th cell expect a shared seasonality, the corresponding forget/input gate for the sea-

sonal component can be factored out - Fig. 5.3 (Right) -, leaving only to the training process

the responsibility to shape the seasonality. This distinction is critical. Dealing with season-

ality at time series level, data is scarce and the smoothing process support the training one in

outlining seasonality. Conversely, when we are learning the seasonality jointly, the amount

of data available is increased and we can trust more the training operation.

Smoothω

Sα(·)

zit, xi
t

S−1(·)

µi
t

f(zit | µi
t,Θ

i)

.

.

.

Smoothω

Sα(·)

zi1 xi
1

S−1(·)

µi
1

f(zi1 | µi
1,Θ

i)

Smoothω

Sα(·)

ziTi
, xi

Ti

S−1(·)

µi
Ti

f(ziTi
| µi

Ti
,Θi)

Figure 5.4: Summary of the model. Observations, covariates and seasonal factors are passed
to the scaling operator s(·) to produce seasonal-free time series. The latter are passed to
the smoothing block sesi

t . Seasonal effects are applied back by mean of s−1(·). A sharing
seasonality scenario is depicted for visualization clearness.

5.3.4 Likelihood model

For the current work we always used the Negative Binomial distribution - please refer to

Sec. 3.1.2 - and the corresponding likelihood and log-likelihood. We also employed the dis-

tribution parameterization proposed by Snyder et al. [SOB12] based on the mean µ and the

paremeter η. For the i -th time series we have

110

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

p i = ηi

1+ηi
;

r i
t =

(
1−p i

)
µi

t

p i
= 1

1+ηi
·µi

t ·
1+ηi

ηi
= µi

t

ηi
;

f
(
zi

t |µi
t ,ηi

)
= Γ

(
zi

t +µi
t/ηi

)
zi

t !Γ
(
µi

t/ηi
) (

1

1+ηi

)z i
t

(
ηi

1+ηi

)µi
t/ηi

`NB

(
ri

1:Ti
, p i |zi

1:Ti

)
=

Ti∑
t=1

+ lnΓ

(
zi

t +
µi

t

ηi

)
− lnΓ

(
µi

t

ηi

)
− ln

(
zi

t !
)

+ zi
t ln

(
1

1+ηi

)
+ µi

t

ηi
ln

(
ηi

1+ηi

)
(5.12)

The prediction ẑi
t will serve as time-dependent mean µi

t , while ηi is attached to the set Θi .

The relationship introduced by Snyder forces the Negative Binomial’s r parameter to be-

come time-dependent, as it is obvious in the previous equations. We have already seen the

same practice when discussing DeepAR and DeepSSM, except that in those cases the time-

dependent parameters were emitted from the LSTM. As it was true for the two SotA models,

our approach is not limited to the application of the Negative Binomial. Any distribution

can be adapted, as long as it is possible to derive log-likelihood’s gradients with respect to

the parameters and samples from the distribution can be obtained easily.

5.3.5 Training

Model parametersΘ are learnt maximizing the sum of log-likelihood functions in Eq. (5.12),

i.e. Θ? = argmax
Θ

L (Θ)

L
(
Θ

)= N∑
i=1

`NB

(
Θi |zi

1:Ti

)
. (5.13)

Proceeding as depicted in Fig. 5.4 the observations zi
1:Ti

are fed to the cell and forwarded to

the next step. The co-variates xi
1:Ti

helps in the seasonal factors selection, the latter are then

applied to the z̃i
1:Ti

to obtain

z̄i
1:Ti

= Sα(z̃i
1:Ti

,si
1:mg

);

a version of the original series purged by seasonal effects. The majority of the work is done

111

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

by the smoothing operations. The latter output level and trend information, which are

stored into the new state hi
1:Ti

. Level and trend are combined and re-scaled, resulting in

the prediction ẑi
1:Ti

which also serves as the time-varying mean

µi
1:Ti

= S−1(li
1:Ti

,ti
1:Ti

,si
1:mg

);

for the stochastic process describing the current time series. If there is a local seasonal-

ity, the context will be updated by a smoothing operation. Otherwise the training process

will learn them jointly and average them over all the time series forming the dataset. From

mean µi
1:Ti

and the set Θi , distribution’s parameters are derived and used to compute the

likelihood f
(
zi

1:Ti
| µi

1:Ti
,Θi

)
.

5.3.6 Prediction

Once all the observations have been consumed and the parameters Θ have been learnt, we

can continue estimating the forecast distribution in Eq. (2.10) via Monte Carlo simulation.

For each time series we start from the µi
Ti

, generate a new sample

ẑi
Ti
∼ NB(µi

t , Θi)

and pass it through the same scaling, smoothing, re-scaling steps seen during training to

obtain the mean µi
Ti+1

for the successive step. The process - depicted in Fig. 5.5 - is repeated

over the whole prediction horizon, for all the time series, until K trajectories are generated

for each of them. The higher K is, the more precise would be the distribution approximation.

From the trajectory collection, we extract the median quantile (ρ = 0.5) to serve as point

forecast of the model. From the same collection, other quantiles could be derived for the

interval prediction.

112

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

Smoothω

Sα(·)

xi
t

S−1(·)

µi
t

ẑit

ẑit ∼ NB(µi
t, Θi)

.Smoothω

Sα(·)

ẑiTi
xTi+1

S−1(·)

µi
Ti+1

ẑiTi+1

Smoothω

Sα(·)

xTi+h

S−1(·)

µi
Ti+h

ẑiTi+h

Figure 5.5: Illustration of the sampling process. For each time step t ∈ [Ti+1, . . . ,Ti+h] a new
sample ẑi

t is drawn from the distribution characterized by µi
t and θi ; the smoothing process

is carried over, producing a new mean µi
t+1 which is further used to generate the next input,

and so on until the whole time range is covered. The process is repeated multiple times to
better approximate the true conditional distribution.

113

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

5.4 Results

We ran our experiments locally, on commercial laptops with no peculiar specifications as

shown in Tab. 5.2. Even though the platforms were equipped with GPUs, we restrained

the experimentation to models running on CPUs. The ongoing climate change crisis and

the energy transition, together with policies required to face the issues, are pushing re-

searchers to question the impact of training AI models and the amount of resources they

need to run. Manufacturers are pressured to either asses their energy efficiency 1 and low

carbon footprint or design new chips to accomplish it. Conversely AI SotA models are pro-

ducing promising results in various fields, escalating resource requests at an exponential

rate [XZF+21]. The majority of the demand is related to Graphic Processing Units (GPUs

). The latter have a great power consumption compared to Central Processing Units (CPUs

), but it is commonly justified by the gain in performances, which reduces the time spent

to complete a job. Nevertheless most of the tests, in our humble opinion, appear to not

take into account all possible CPU scenarios - or are vague about them - running tests in

the conventional sequential mode. An additional degree of awareness is indeed required to

take advantage of CPU parallelism, either data or thread or both. Opposite to GPUs which

exploit data and thread parallelism by design, supported by dedicated kernels. The choice

between GPUs and CPUs is not relegated only to energy consumption and performances,

it affects the business expenses too. Computational resources are offered at different costs,

depending if the customer either opts for an on-demand plan, or reserves a whole instance

or chooses a spot instance. The average price for GPU instances ranges roughly from the 13$

per hour for an on-demand plan to the 2$ per hour when an instance is reserved. The price

drops between 5 and ten times for the single CPUs. Thus being efficient on CPUs, while

not loosing accuracy, can cut the energy consumption, emission and expenses. To cite an

instance this is what we observed for the DeepAR model tested on the parts dataset. The

original paper used p2.xlarge AWS EC2 instance with 4 CPUs and 1 NVIDIA Tesla K80 GPU

and claimed a 5 minutes running time on this machine. Properly setting the environment,

we replicated both the accuracy and the running time on the commercial machines listed

in the table.

In the coming sections, to assess the model accuracies, we used the ρ-risk metric (Sec. 3.1.6

). The median risk, 0.5-risk, is equivalent to the p50 value reported in the DeepSSM research

paper and to the ND noted in the N-Beats work. The DeepAR and DeepSSM open-source

implementations are part of the GluonTS [ABBS+20] repository 2, the corresponding com-

1What’s Up? Watts Down – More Science, Less Energy: https://blogs.nvidia.com/blog/2023/05/21/gpu-
energy-efficiency-nersc/

2GluonTS repository: https://github.com/awslabs/gluonts/

114

https://blogs.nvidia.com/blog/2023/05/21/gpu-energy-efficiency-nersc/
https://github.com/awslabs/gluonts/

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

Table 5.2: Benchmark hardware specifitions.

Laptop 1 Laptop 2

CPU i7-10750H i7-10850H
RAM (GB) 16 32
GPU NVIDIA GeForce RTX 2060 NVIDIA Quadro P620

mercial version is accessible through Amazon SageMaker 3. The original N-Beats code is

available on the corresponding repository 4, while the one including the parts dataset and

used for the current work is available on a public fork 5. All the models had been trained

using the ADAM optimizer.

To develop our model outside the company technological stack, we had chosen Julia. Julia

is a fair new programming language - the first release dates back to 2012 - which aims at

providing a single environment productive enough for prototyping, efficient enough for de-

ploying performance-intensive applications. It is a flexible dynamic language performance

comparable to traditional statically-typed languages. Both flexibility and performance are

coming from just-in-time (JIT) compilation (and optionally ahead-of-time compilation

), implemented using LLVM. It is multi-paradigm, combining features of imperative, func-

tional, and object-oriented programming. Two choices are available in Julia to achieve au-

tomatic differentiation: Zygote.jl [Inn19] and Enzyme [MC20]. Zygote is an open-source li-

brary which extends Julia’s dynamic semantics with syntactic AD transformations. Contrary,

Enzyme is a cross-language solution which works on the LLVM intermediate representation.

It could be virtually applied to all LLVM compiled languages, like C++ and Rust. Thus the

code produced using Julia in combination with Enzyme can exploit all the optimization at

disposal of the underlying compiler. Both Zygote and Enzyme impose no restrictions to the

class of functions which can be differentiated and introduce no sub-languages, allowing to

specify the model in plain Julia. That being said we have chosen Enzyme for our work. Fi-

nally, thanks to Julia’s distributed features, we were able to accomplish without (so many)

troubles data parallelism on CPUs. A repository 6 for this thesis work is publicly available.

Parts dataset

For the DeepAR and DeepSSM architectures we used the same hyperparameters found in

the respective works, and reported in table Tab. 5.3 for convenience. Settings for the N-

3Amazon SageMaker website: https://aws.amazon.com/it/sagemaker/
4N-Beats repository: https://github.com/ServiceNow/N-BEATS
5N-Beats fork (with parts dataset experiments): https://github.com/acifonelli/N-BEATS
6Probabilistic Exponential Smoothing repository: https://github.com/acifonelli/ES-AD

115

https://aws.amazon.com/it/sagemaker/
https://github.com/ServiceNow/N-BEATS
https://github.com/acifonelli/N-BEATS
https://github.com/acifonelli/ES-AD

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

Beats architectures had been found via Grid Search, since the dataset was not included in

the original paper. Only hyperparameters for the best performing global (N-Beats-G) and

interpretable (N-Beats-I) models are reported in Tab. 5.3. As already mentioned while in-

troducing the dataset, the data represent monthly aligned time seris. For each and every

time series, we had to forecat the last year of data, i.e. H = 12.

Table 5.3: Parts: State-of-the-Art models hyperparameters.

DeepAR DeepState N-Beats-G N-Beats-I

Batch Size 64 512
Learning Rate 1e-3 1e-3
Epochs 80 100 – –

#Cells 40
#Layers 3
Embedding Dim. 1046 1

DeepAR
Encorder Length 12
Decoder Length 12

DeepSSM Latent Dimension 12

N-Beats

Repetition 1
Losses MAPE / MASE / SMAPE
Lookback [H,2H,3H,4H]
FC Size 512
FC Layers 3
#Blocks 30
Seasonal FC Size 512
Seasonal FC Layers 3
Seasonal #Blocks 3
Trend FC Size 256
Trend FC Layers 3
Trend #Blocks 3
Polynomial Degree 3

All the Fully Connected quantities refer to the first FC sub-element in Fig. 3.10, the one pre-

ceding the backcast/forecast fork. Repetition tells how many times the training is repeated,

for all the losses specified, over all the lookback requested. In our experiments we trained

a total of 12 models (3 metrics · 4 lookbacks · 1 repetition). This condition, i.e. when only

one repetition is demanded, is also called small ensemble by the authors. The final accuracy

is computed on the ensemble average. Both DeepAR and N-Beats used early stopping over

training. The forget bias for the LSTM in the DeepAR work had been set at 1. No further

116

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

information are available for the DeepSSM model.

We used a 5e − 3 learning rate and trained on the full dataset for 481 epochs. Contrary to

the previous models, we didn’t use any hyperparameter. In the worst case scenario, i.e. time

series-wise seasonality, we will use: 3’138 smoothing factors (3 · 1’046), 1’046 θ, 12’552 sea-

sonal factors (12 · 1046) to model the monthly seasonality. The number of parameters will

therefore sum to 16’736. However we don’t need all of them. The intermittent data do not

present any sign of trend, hence we can get rid of the [β][][i] factors. Modelling seasonal-

ity at singular time series level with a scarcity of data will be of no use and will not align us

with the other models. Hence we learn jointly a single seasonal monthly profile. The latter

remark alone removes the γi factors and reduces the parameters toll to 1’058 parameters.

Table 5.4 and Tab. 5.5 show the model performances and the training time on the bench-

mark platforms respectively. Our approach is able to achieve State-of-the-Art performances

while being the fastest, among the tested models, to train.

Table 5.4: Parts: Accuracy metrics over the horizon H = 12. The lower, the better. Bold - best
performing model. Red - second best performing.

Rangapuram et al. [RSG+18]

ets auto.arima DeepAR DeepState N-Beats-G N-Beats-I PES

p50 1.639 1.6444 1.273 1.470 1.19 1.18 1.087
p90 1.0086 1.0664 1.086 0.935 — — 0.432

Table 5.5: Parts: Average training time on the benchmark machines in Tab. 5.2.

DeepAR DeepState PES N-Beats-G N-Beats-I

Time ∼ 5 min. < 1 min. ∼ 1 min. 30 sec.

The N-Beats architecture can not take advantage of its pure Deep Learning design in this

context. Notably, the architecture is still able to perform better than the other two SotA

models. Even if by a negligible amount, the N-Beats-I performs better than its general coun-

terpart. We could imagine that the a priori knowledge imposed on the basis functions by the

Fourier series and the polynomial, helped the model coping with the data scarcity.

M4 Hourly

Even though the dataset was part of the DeepSSM research paper, no hyperparameters

were reported. We had derived them from the GluonTS implementation, reworking them

117

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

if needed to replicate the original results. For the N-Beats architecture, we report them as

found in the related research. The time series included in the dataset are not aligned - i.e.

Ti can vary - and each of them have to receive a forecast for the last 48, hence H = 48, hours

of their history.

Table 5.6: M4: State-of-the-Art models hyperparameters.

DeepAR DeepState N-Beats-G N-Beats-I

Batch Size 50 512
Learning Rate 1e-3
Epochs 100 5000

#Cells 40
#Layers 2
Embedding Dim. – –

DeepAR
Encorder Length 48
Decoder Length 48

DeepSSM Latent Dimension 31

N-Beats

Repetition 10
Lookback [2H,3H,4H,5H,6H,7H]
FC Size 512
FC Layers 4
#Blocks 30
Seasonal FC Size 2048
Seasonal FC Layers 4
Seasonal #Blocks 3
Trend FC Size 256
Trend FC Layers 4
Trend #Blocks 3
Polynomial Degree 2

We used the same learning rate and trained on the full dataset for 1040 epochs. Opposite

to the parts dataset, we left the trend in place - as the majority of the time series have a

rich history - and asked for two seasonality, Hour-of-Day and Day-of-Week, which we learnt

jointly. The number of parameters involved in the sum to 859 parameters: 414 α, 414 β, 24

hourly seasonal factors, 7 day of week seasonal factors.

Table 5.7 and Tab. 5.8 are dedicated to report model performances and training time each.

The time reported for the N-Beats architecture refers to the small ensemble mentioned in

the introduction. For this experiment the small ensemble is composed by 18 models (3 met-

118

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

rics · 6 lookbacks · 1 repetition). The final accuracy is computed on the ensemble average.

Nonetheless to faithfully reproduce the paper results we should have used 10 repetitions,

for a total of 180 models. In the latter case a bit more than 12 days are required to train the

network.

Table 5.7: M4 Hourly: Accuracy metrics over the horizon H = 48. The lower, the better. Bold
- best performing model. Red - second best performing.

Rangapuram et al. [RSG+18], Oreshkin et al. [ODPT21]

DeepAR DeepState N-Beats-G N-Beats-I PES

p50 0.090 0.044 0.023 0.027 0.19
p90 0.030 0.026 — — 0.097

Table 5.8: M4: Average training time on the benchmark machines in Tab. 5.2.

DeepAR DeepState PES N-Beats-G N-Beats-I

Time ∼ 4 hours 45 min. ∼ 45 min. ∼ 1 day 5 hours

Our approach is remarkably fast over the training process compared to all the other models.

However it is inferior in performance, between 4 and 8 times, with reference to the best

performing architecture. The loss in performance is rooted to the trend component. Most

of the time series exposing a trend have also more than one changing points, i.e. points

where the direction and slope of the trend changes. The smoothing process introduces a

latency in the response, thus a quick rise in the trend will be diluted over the time. We can

appreciate as deep architectures benefit from the rich history present in the dataset. The

best performing model is the N-Beats one, but contrary to the parts dataset experiment the

general architecture has an advantage over the interpretable one.

119

CHAPTER 5. PROBABILISTIC EXPONENTIAL SMOOTHING FOR DEMAND
FORECASTING

120

Chapter 6

Conclusions

In Chapter 1 we talked about the role of AI in the Supply Chain management activities and

how the adoption of new technologies encounter a certain degree of inertia within com-

panies from different backgrounds. Costs are the main obstacles. Companies hang to older

systems because of the time and money needed to replace them. On average 2.8 years are re-

quired from vendor selection to a complete roll-out of the new solution. Time is the second.

Sixty percent of the time the implementation of a new solution fails due to missed dead-

lines, over budget or disappointing outcomes. Finally, switching to a new solution is not

only a matter of technologies. Companies need to prepare the staff to use the new system,

ensuring that they are engaged with it and the possible new working flow, while running

in parallel the older one to not shutdown operations. The human component can not be

taken out of the equation; each professional would rely on his or her expertise - and a set of

preferred tools - to solve a problem. Three focal points had been highlighted:

• misalignment with the business perfomances;

• need for explainable results;

• lack of trustworthiness in the new solution.

If the previous three points are true at large, dealing with supply chain data is even more

demanding:

• embrace uncertainty;

• dealing with integer and positive data;

• lack of observability of the real business target - customer’s demand can not be mea-

sured directly -;

121

CHAPTER 6. CONCLUSIONS

• data scarcity;

• just-in-time optimization to incorporate unexpected events or mandatory adjust-

ments.

In Chapter 2, the fundamental concepts of time series analysis and time series forecasting

had been introduced. Time series analysis tries to apprehend from the data the most im-

portant properties of the series. Frequently the task demands knowledge of the application

field, thus it could be prone to cognitive bias. Nonetheless it is preparatory for the time se-

ries forecasting job, helping in the model selection. Forecasting a single value, e.g. the mean

of the time series, takes the name of point forecast. If instead we are interested not only in

the quantity itself but also how much it can change, we should prefer a probabilistic fore-

cast task. Classical methods and models, as well as Neural Networks, had been reviewed.

Classical but not antiquated since most of them - if not even all - remain undisturbed in

the companies’ working flow. They follow a white-box approach, i.e. the model “reason-

ing” and outcome are transparent to the user. Contrarily Neural Networks, and AI models

at large, obey to a black-box paradigm. Sequences are treated with specific neural architec-

tures, called Recurrent Neural Networks, which retain a representation of the context seen

so far - summarised into a state - and propagate it through time. Recurrent Neural Networks

come with several designs - some not treated in this context - but LSTM is by far the most

used architecture in practice. Attempts to merge standard methods and AI models are not

lacking in the literature.

Demand forecasting and the relative literature is the focus of Chapter 3. Demand time series

are characterized by several oddities like being made only by positive integer observations

or being arranged into a hierarchy. Sales, the quantity effectively recorded in the time se-

ries, are only a proxy for the real value we are interested into, the demand. Unfortunately,

demand is a not observable quantity (we can not measure a not satisfied demand). Prob-

abilistic time series forecasting, together with a learning process based on the Maximum

Likelihood Estimation, is a preferable choice in this context. The latest State-of-the-Art

models had been here introduced and discussed.

Chapter 4 reviewed Automatic Differentiation, a more functional - in the computer science

mean - approach to model developing, and its main mode called Reverse, a generalization

of the most known backpropagation. Automatic Differentiation is thrusting Differentiable

Programming, a paradigm shift which treats, at large, a general puece of code as a sequence

of differentiable operations. In this perspective any function, concatenation of functions or

algorithms in general can be seen as a model.

With a functional design in mind and attention to practitioners’ needs, we introduced our

new model in Chapter 5. The Probabilistic Exponential Smoothing model is tailored to the

122

CHAPTER 6. CONCLUSIONS

univariate time series solving a probabilistic forecasting problem. It is grounded on the Ex-

ponential Smoothing family, a well known, vastly studied and widely accepted suit of meth-

ods which are still one of the standard solutions in the industry. Contrary to its ancestor our

model has room for multiple seasonality and can levarage machine learning techniques,

like cross-learning, to cope with limitations. Although it is not still able to compete with

SotA models in cases where a rich history is accessible, it sets state-of-the-art results on

real sparse and intermittent business data. Additionally it is transparent for the practitioner

since each and every parameter, from the smoothing factors to the seasonal profiles, have

a clear and immediate translation into business values. The functional design allow the

parameters inspection and modification to test the same model under different scenarios.

Thanks to its probabilistic nature, it can easily cope with the integer constraint and propose

confidence intervals to guide decision under uncertain situations. There are of course lim-

itations to the approach. To cite an instance, in case of asymmetric data the cross-learning

process, smoothing the extrema, can impact the forecasting at the distribution’s tail. More-

over, the smoothing process at trend level seems to not deal well with unexpected rise in the

signal, introducing a latency in the model responde and negatively impacting the outcome.

6.1 Future perspectives

A common design involving LSTMs - and RNNs at large - is a stacked architecture. Multi-

ple instances of the LSTM are randomly initialized and composed together. Stacking helps

the generalization process and avoid biases in the forecast. In the current setting we could

think of stacking as a way to construct a small ensemble, time series wise. However how to

aggregate the outcome of such a stack is not clear. Dealing with only a point forecast we can

aggregate the outcome of a stacked architecture summing all the responses and taking the

average. In the context of probabilistic forecast each and every outcome represents a distri-

bution. For most of the count distribution used in this work there is no properties similar

to the sum of Gaussians, thus we should leverage a form of convolution. The latter however

is a very complex and cumbersome operation which will swell both training and prediction

timing.

Trend seems to be the Achille’s heel of the model. The introduction of different trend models

alongside the smoothing one, like a piece-wise linear trend, could help the model in achiev-

ing better results.

As it is, Probabilistic Exponential Smoothing can not be used immediately to forecast a new

time series with no history. However a possible workaround would be to assign to the new

series smoothing values αi , βi - and γi optionally, depending on the context - averaged over

those of related time series.

123

CHAPTER 6. CONCLUSIONS

Another interesting enhancement would be the promotion of the αi parameters from scalar

to vector. The latter could be beneficial to further capture dependencies between successive

time steps and variations over the time series period.

Despite the future work still required by the solution, we think that it answers most of the

critical points raised by the Supply Chain management and can be a valid candidate to solve

a wide range of real business problems.

124

Acknowledgements

Professionally I would like to thank Joannes Vermorel, CEO of Lokad. His vision on Machine

Learning and how it should be coupled with the business needs paved the way for this the-

sis opportunity. I would like to express my gratitude to Prof. Canu, my thesis advisor, for

the guidance through this journey. I am also grateful to Prof. Cecilia Zanni-Merk and Prof.

Ahlame Douzal, not only for their insightful technical feedbacks but also for their kindness

and humanity in the gloomy moments over these years. To all of them I am thankful for the

patience.

I would express my appreciation to Gaëtan Delétoille, Vincent Berthoux and Paul Peseux for

their contribution with technical insights, bad jokes and some beers.

My appreciation also goes to the Lokad’s administrative team, especially to Estelle Dewost,

for their hard work. Bureaucracy is not something which France made easy.

At large I would like to acknowledge all the people that in some way, technically or not,

contributed directly to this work or indirectly creating a pleasant environment to work.

On the personal side there is only one person I am grateful to and grateful for, Annalisa. My

wife. In French épouse means “wife”; in English the term espouse is synonym of “support”,

“help”. You are my é(s)pouse. You are my rock.

Bibliography

[ABBS+20] Alexander Alexandrov, Konstantinos Benidis, Michael Bohlke-Schneider,

Valentin Flunkert, Jan Gasthaus, Tim Januschowski, Danielle C. Maddix,

Syama Rangapuram, David Salinas, Jasper Schulz, Lorenzo Stella, Ali Caner

Türkmen, and Yuyang Wang. GluonTS: Probabilistic and Neural Time Se-

ries Modeling in Python. Journal of Machine Learning Research, 21(116):1–6,

2020.

[Aka73] H Akaike. Information theory and an extension of the maximum likeli-

hood principle. In 2nd Inter. Symp. on Information Theory, pages 267–281.

Akademiai Kiado, 1973.

[AN00] Vassilis Assimakopoulos and K. Nikolopoulos. The theta model: A decompo-

sition approach to forecasting. International Journal of Forecasting, 16:521–

530, 10 2000.

[Bau74] F. L. Bauer. Computational graphs and rounding error. SIAM Journal on

Numerical Analysis, 11(1):87–96, 1974.

[BCB15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine

translation by jointly learning to align and translate. In Yoshua Bengio and

Yann LeCun, editors, 3rd International Conference on Learning Representa-

tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Pro-

ceedings, 2015.

[BJ76] GEP Box and GM Jenkins. Time series analysis forecasting and control-Rev.

San Francisco, Calif.(USA) Holden-Day, 1976.

[BPC+11] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.

Distributed optimization and statistical learning via the alternating direc-

tion method of multipliers. Foundations and Trends in Machine Learning,

3(1):1–122, 2011.

I

BIBLIOGRAPHY

[BPRS18] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and

Jeffrey Mark Siskind. Automatic differentiation in machine learning: a sur-

vey. Journal of Machine Learning Research, 18(153):1–43, 2018.

[BSF94] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term de-

pendencies with gradient descent is difficult. IEEE transactions on neural

networks, 5(2):157–166, 1994.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. K

Zadeck. Efficiently computing static single assignment form and the con-

trol dependence graph. Technical report, Brown University, 1991.

[CGH+17] Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben

Goodrich, Michael Betancourt, Marcus Brubaker, Jiqiang Guo, Peter Li, and

Allen Riddell. Stan: A probabilistic programming language. Journal of Sta-

tistical Software, 76(1):1–32, 2017.

[Cli71] Clifford. Preliminary sketch of biquaternions. Proceedings of the London

Mathematical Society, s1-4(1):381–395, 1871.

[Con21] Breandan Considine. Programming tools for intelligent systems, 2021.

[CPI+96] T Czernichow, A Piras, K Imhof, P Caire, Y Jaccard, B Dorizzi, and A Ger-

mond. Short term electrical load forecasting with artificial neural networks.

Engineering Intelligent Systems for Electrical Engineering and Communica-

tions, 4(ARTICLE):85–99, 1996.

[Cro72] J. D. Croston. Forecasting and stock control for intermittent demands. Op-

erational Research Quarterly (1970-1977), 23(3):289–303, 1972.

[DGH06] Jan G De Gooijer and Rob J Hyndman. 25 years of time series forecasting.

International journal of forecasting, 22(3):443–473, 2006.

[DH06] Benjamin Dauvergne and Laurent Hascoët. The data-flow equations of

checkpointing in reverse automatic differentiation. In Computational Sci-

ence – ICCS 2006, pages 566–573. Springer Berlin Heidelberg, 2006.

[dLPR17] Bart de Langhe, Stefano Puntoni, and Larrick Richard. Linear thinking in a

nonlinear world. Harvard Business Review, 95(5–6):130–139, 2017.

[DM97] Pierre Del Moral. Nonlinear filtering: Interacting particle resolu-

tion. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics,

325(6):653–658, 1997.

II

BIBLIOGRAPHY

[Fam93] Felix Famoye. Restricted generalized poisson regression model. Communi-

cations in Statistics - Theory and Methods, 22(5):1335–1354, 1993.

[Fam97] Felix Famoye. Generalized poisson random variate generation. American

Journal of Mathematical and Management Sciences, 17(3-4):219–237, 1997.

[GA01] David Gay and Alex Aiken. Language support for regions. SIGPLAN Not.,

36(5):70–80, may 2001.

[Gay06] David M. Gay. Semiautomatic differentiation for efficient gradient compu-

tations. In Automatic Differentiation: Applications, Theory, and Implemen-

tations, pages 147–158. Springer Berlin Heidelberg, 2006.

[Ger19] Alexis Gerossier. Short-term forecasting of electricity demand of smart homes

and distribution grids. Theses, Université Paris sciences et lettres, May 2019.

[GGS19] Maria I. Gorinova, Andrew D. Gordon, and Charles Sutton. Probabilistic pro-

gramming with densities in slicstan: Efficient, flexible, and deterministic.

Proceedings of the ACM on Programming Languages, 3:35:1–35:30, January

2019.

[GJ80] Clive WJ Granger and Roselyne Joyeux. An introduction to long-memory

time series models and fractional differencing. Journal of time series analy-

sis, 1(1):15–29, 1980.

[Gri92] Andreas Griewank. Achieving logarithmic growth of temporal and spatial

complexity in reverse automatic differentiation. Optimization Methods and

Software, 1(1):35–54, 1992.

[GW08] Andreas Griewank and Andrea Walther. Evaluating Derivatives. Society for

Industrial and Applied Mathematics, second edition, 2008.

[H+04] Rob J Hyndman et al. The interaction between trend and seasonality. Inter-

national Journal of Forecasting, 20(4):561–563, 2004.

[H+06] Rob J Hyndman et al. Another look at forecast-accuracy metrics for intermit-

tent demand. Foresight: The International Journal of Applied Forecasting,

4(4):43–46, 2006.

[HA21] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and

practice. OTexts: Melbourne, Australia., 2021. Accessed on 2022-03-09.

[Har84] Andrew C Harvey. A unified view of statistical forecasting procedures. Jour-

nal of forecasting, 3(3):245–275, 1984.

III

BIBLIOGRAPHY

[Har90] Andrew C Harvey. Forecasting, Structural Time Series Models and the Kalman

Filter. Cambridge University Press, 1990.

[HB03] Rob J Hyndman and Baki Billah. Unmasking the theta method. International

Journal of Forecasting, 19(2):287–290, 2003.

[HGS20] Malo Huard, Rémy Garnier, and Gilles Stoltz. Hierarchical robust aggre-

gation of sales forecasts at aggregated levels in e-commerce, based on ex-

ponential smoothing and Holt’s linear trend method. working paper or

preprint, June 2020.

[HK06] Rob J Hyndman and Anne B Koehler. Another look at measures of forecast

accuracy. International journal of forecasting, 22(4):679–688, 2006.

[HKOS] Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Fore-

casting with exponential smoothing: the state space approach. https:

//robjhyndman.com/expsmooth/. Website with supplementary materials

for the homonymous book [Online].

[HKOS08] Rob Hyndman, Anne B Koehler, J Keith Ord, and Ralph D Snyder. Forecasting

with exponential smoothing: the state space approach. Springer Science &

Business Media, 2008.

[HKSG02] Rob J Hyndman, Anne B Koehler, Ralph D Snyder, and Simone Grose. A

state space framework for automatic forecasting using exponential smooth-

ing methods. International Journal of forecasting, 18(3):439–454, 2002.

[HLVDMW17] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger.

Densely connected convolutional networks. In 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 2261–2269, 2017.

[Hol] South Korea Public Holidays. Seoul bike sharing demand data set. https:

//archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand.

hosted by UCI Machine Learning Repository [Online].

[Hol04] Charles C Holt. Forecasting seasonals and trends by exponentially weighted

moving averages. International journal of forecasting, 20(1):5–10, 2004.

[HP13] Laurent Hascoet and Valérie Pascual. The tapenade automatic differenti-

ation tool: Principles, model, and specification. ACM Trans. Math. Softw.,

39(3), may 2013.

IV

https://robjhyndman.com/expsmooth/
https://robjhyndman.com/expsmooth/
https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand
https://archive.ics.uci.edu/ml/datasets/Seoul+Bike+Sharing+Demand

BIBLIOGRAPHY

[HPS01] Henrique Steinherz Hippert, Carlos Eduardo Pedreira, and Reinaldo Castro

Souza. Neural networks for short-term load forecasting: A review and eval-

uation. IEEE Transactions on power systems, 16(1):44–55, 2001.

[HS76] P Jeffrey Harrison and Colin F Stevens. Bayesian forecasting. Journal of the

Royal Statistical Society: Series B (Methodological), 38(3):205–228, 1976.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-

ral computation, 9(8):1735–1780, 1997.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 770–778, 2016.

[Inn19] Michael Innes. Don’t unroll adjoint: Differentiating ssa-form programs,

2019.

[JOP01] Eric Jones, Travis Oliphant, and Pearu Peterson. Scipy: Open source scien-

tific tools for python. SciPy, Austin, USA. URL http://www. scipy. org, 01 2001.

[JU97] Simon J Julier and Jeffrey K Uhlmann. New extension of the kalman filter

to nonlinear systems. In Signal processing, sensor fusion, and target recog-

nition VI, volume 3068, pages 182–193. International Society for Optics and

Photonics, 1997.

[Kal60] Rudolph Emil Kalman. A new approach to linear filtering and prediction

problems. Transactions of the ASME–Journal of Basic Engineering, 82(Series

D):35–45, 1960.

[KBDOAEA21] Walid Klibi, Mohamed Zied Babai, Yves Ducq, and Haytham Omar Abd

El Akher. Basket data-driven approach for omnichannel demand forecast-

ing. working paper or preprint, April 2021.

[KD01] SJ Koopman and J Durbin. Time Series Analysis by State Space Methods.

Number 019-961199 in Oxford Statiscal Science Series. Oxford University

press, 2001.

[KH06] A V Kostenko and R J Hyndman. A note on the categorization of demand pat-

terns. Journal of the Operational Research Society, 57(10):1256–1257, 2006.

[LBD+89] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied

V

BIBLIOGRAPHY

to handwritten zip code recognition. Neural computation, 1(4):541–551,

1989.

[LC98] Jun S Liu and Rong Chen. Sequential monte carlo methods for dynamic

systems. Journal of the American statistical association, 93(443):1032–1044,

1998.

[LL17] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model

predictions. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information

Processing Systems, volume 30. Curran Associates, Inc., 2017.

[MAC+82] S. Makridakis, A. Andersen, R. Carbone, R. Fildes, M. Hibon,

R. Lewandowski, J. Newton, E. Parzen, and R. Winkler. The accuracy

of extrapolation (time series) methods: Results of a forecasting competition.

Journal of Forecasting, 1(2):111–153, 1982.

[Mak18] Spyros Makridakis. M4 forecasting competition. https://github.com/

Mcompetitions/M4-methods, 2018. [Online].

[Mar19] Charles C. Margossian. A review of automatic differentiation and its efficient

implementation. WIREs Data Mining and Knowledge Discovery, 9(4):e1305,

2019.

[MC20] William Moses and Valentin Churavy. Instead of rewriting foreign code for

machine learning, automatically synthesize fast gradients. In H. Larochelle,

M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neu-

ral Information Processing Systems, volume 33, pages 12472–12485. Curran

Associates, Inc., 2020.

[MCH+93] Spyros Makridakis, Chris Chatfield, MichÃ¨le Hibon, Michael Lawrence,

Terence Mills, Keith Ord, and LeRoy F. Simmons. The m2-competition: A

real-time judgmentally based forecasting study. International Journal of

Forecasting, 9(1):5–22, 1993.

[McKa] McKinsey & Company. Global survey - the state of ai in 2020. https:

//www.mckinsey.com/business-functions/mckinsey-analytics/

our-insights/global-survey-the-state-of-ai-in-2020. McKinsey

Analytics [Online].

[McKb] McKinsey & Company. The state of ai in 2022

- and a half decade in review. https://www.

VI

https://github.com/Mcompetitions/M4-methods
https://github.com/Mcompetitions/M4-methods
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/global-survey-the-state-of-ai-in-2020
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/global-survey-the-state-of-ai-in-2020
https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/global-survey-the-state-of-ai-in-2020
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2022-and-a-half-decade-in-review
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2022-and-a-half-decade-in-review
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2022-and-a-half-decade-in-review

BIBLIOGRAPHY

mckinsey.com/capabilities/quantumblack/our-insights/

the-state-of-ai-in-2022-and-a-half-decade-in-review. McKin-

sey Analytics [Online].

[McKc] McKinsey & Company. The state of ai in 2023: Gen-

erative ai’s breakout year. https://www.mckinsey.

com/capabilities/quantumblack/our-insights/

the-state-of-ai-in-2023-generative-ais-breakout-year. McK-

insey Analytics [Online].

[McKd] McKinsey & Company. To improve your supply

chain, modernize your supply-chain it. https://www.

mckinsey.com/capabilities/operations/our-insights/

to-improve-your-supply-chain-modernize-your-supply-chain-it.

McKinsey Analytics [Online].

[MDA15] Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Autograd: Effort-

less gradients in numpy. In ICML 2015 AutoML workshop, volume 238, 2015.

[MH00] Spyros Makridakis and MichÃ¨le Hibon. The m3-competition: results, con-

clusions and implications. International Journal of Forecasting, 16(4):451–

476, 2000.

[MHM79] Spyros Makridakis, Michele Hibon, and Claus Moser. Accuracy of forecast-

ing: An empirical investigation. Journal of the Royal Statistical Society. Series

A (General), 142(2):97–145, 1979.

[MP43] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas imma-

nent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–

133, 1943.

[MSA18a] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. The

m4 competition: Results, findings, conclusion and way forward. Interna-

tional Journal of Forecasting, 34(4):802–808, 2018.

[MSA18b] Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. Sta-

tistical and machine learning forecasting methods: Concerns and ways for-

ward. PloS one, 13(3):e0194889, 2018.

[Nau] Robert Nau. Regression example - weekly beer sales. https://people.

duke.edu/~rnau/Regression_example--weekly_beer_sales.xlsx. Sta-

tistical forecasting: notes on regression and time series analysis [Online].

VII

https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2022-and-a-half-decade-in-review
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2022-and-a-half-decade-in-review
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2022-and-a-half-decade-in-review
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2022-and-a-half-decade-in-review
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2023-generative-ais-breakout-year
https://www.mckinsey.com/capabilities/operations/our-insights/to-improve-your-supply-chain-modernize-your-supply-chain-it
https://www.mckinsey.com/capabilities/operations/our-insights/to-improve-your-supply-chain-modernize-your-supply-chain-it
https://www.mckinsey.com/capabilities/operations/our-insights/to-improve-your-supply-chain-modernize-your-supply-chain-it
https://people.duke.edu/~rnau/Regression_example--weekly_beer_sales.xlsx
https://people.duke.edu/~rnau/Regression_example--weekly_beer_sales.xlsx

BIBLIOGRAPHY

[ODPT21] Boris N Oreshkin, Grzegorz Dudek, Paweł Pełka, and Ekaterina Turkina. N-

beats neural network for mid-term electricity load forecasting. Applied En-

ergy, 293:116918, 2021.

[Oli07] Travis E. Oliphant. Python for scientific computing. Computing in Science &

Engineering, 9(3):10–20, 2007.

[Par82] Emanuel Parzen. Ararma models for time series analysis and forecasting.

Journal of Forecasting, 1(1):67–82, 1982.

[Peg69] C Carl Pegels. Exponential forecasting: Some new variations. Management

Science, pages 311–315, 1969.

[Pes21] Paul Peseux. Differentiating relational queries. In VLDB 2021 PhD Workshop,

2021.

[Que57] Maurice Henry Quenouille. The analysis of multiple time-series. Technical

report, London: Griffin, 1957.

[RHW85] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning

internal representations by error propagation. Technical report, California

Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[RKGR17] Sam Ransbotham, David Kiron, Philipp Gerbert, and Martin Reeves. Re-

shaping business with artificial intelligence: Closing the gap between ambi-

tion and action. MIT Sloan Management Review, 59(1), 2017.

[RLG98] Juan Mario Restrepo, Gary K. Leaf, and Andreas Griewank. Circumventing

storage limitations in variational data assimilation studies. SIAM Journal on

Scientific Computing, 19(5):1586–1605, 1998.

[Ros58] Frank Rosenblatt. The perceptron: a probabilistic model for information

storage and organization in the brain. Psychological review, 65(6):386, 1958.

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i

trust you?" explaining the predictions of any classifier. In Proceedings of

the 22nd ACM SIGKDD international conference on knowledge discovery and

data mining, pages 1135–1144, 2016.

[RSG+18] Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo

Stella, Yuyang Wang, and Tim Januschowski. Deep state space models for

time series forecasting. Advances in neural information processing systems,

31:7785–7794, 2018.

VIII

BIBLIOGRAPHY

[RT13] Bahman Rostami Tabar. ARIMA demand forecasting by aggregation. Theses,

Université Sciences et Technologies - Bordeaux I, December 2013.

[SBC05] A A Syntetos, J E Boylan, and J D Croston. On the categorization of demand

patterns. Journal of the Operational Research Society, 56(5):495–503, 2005.

[Sch78] Gideon Schwarz. Estimating the dimension of a model. The annals of statis-

tics, pages 461–464, 1978.

[SFGJ19] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski.

Deepar: Probabilistic forecasting with autoregressive recurrent networks.

International Journal of Forecasting, 2019.

[SHJ+20] Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu

Lakkaraju. Fooling lime and shap: Adversarial attacks on post hoc expla-

nation methods. In Proceedings of the AAAI/ACM Conference on AI, Ethics,

and Society, pages 180–186, 2020.

[Smy20] Slawek Smyl. A hybrid method of exponential smoothing and recurrent neu-

ral networks for time series forecasting. International Journal of Forecasting,

36(1):75–85, 2020.

[Sny85] RD Snyder. Recursive estimation of dynamic linear models. Journal of the

Royal Statistical Society. Series B (Methodological), pages 272–276, 1985.

[SOB12] Ralph D. Snyder, J. Keith Ord, and Adrian Beaumont. Forecasting the inter-

mittent demand for slow-moving inventories: A modelling approach. Inter-

national Journal of Forecasting, 28(2):485–496, 2012.

[Sor85] Harols W Sorenson. Kalman Filtering: Theory and Application. IEEE Press,

1985.

[SP18] Jeffrey Mark Siskind and Barak A. Pearlmutter. Divide-and-conquer check-

pointing for arbitrary programs with no user annotation. Optimization

Methods and Software, 33(4-6):1288–1330, 2018.

[SSF16] Matthias W Seeger, David Salinas, and Valentin Flunkert. Bayesian intermit-

tent demand forecasting for large inventories. Advances in Neural Informa-

tion Processing Systems, 29, 2016.

[Ste89] John D Sterman. Modeling managerial behavior: Misperceptions of feed-

back in a dynamic decision making experiment. Management science,

35(3):321–339, 1989.

IX

BIBLIOGRAPHY

[THT+14] Jean-Baptiste Tristan, Daniel Huang, Joseph Tassarotti, Adam C Pocock,

Stephen Green, and Guy L Steele. Augur: Data-parallel probabilistic model-

ing. Advances in Neural Information Processing Systems, 27, 2014.

[TL18] Sean J Taylor and Benjamin Letham. Forecasting at scale. The American

Statistician, 72(1):37–45, 2018.

[Ver00] Arun Verma. An introduction to automatic differentiation. Current Science,

78(7):804–807, 2000.

[vMBBL18] Bart van Merrienboer, Olivier Breuleux, Arnaud Bergeron, and Pascal Lam-

blin. Automatic differentiation in ml: Where we are and where we should be

going. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,

and R. Garnett, editors, Advances in Neural Information Processing Systems,

volume 31. Curran Associates, Inc., 2018.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you

need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural Information Process-

ing Systems, volume 30. Curran Associates, Inc., 2017.

[Wen64] R. E. Wengert. A simple automatic derivative evaluation program. Commun.

ACM, 7(8):463–464, aug 1964.

[Whi51] Peter Whittle. Hypothesis Testing in Time Series Analysis. PhD thesis, Uppsala

University, 1951.

[Win60] Peter R Winters. Forecasting sales by exponentially weighted moving aver-

ages. Management science, 6(3):324–342, 1960.

[XZF+21] Jingjing Xu, Wangchunshu Zhou, Zhiyi Fu, Hao Zhou, and Lei Li. A survey

on green deep learning. CoRR, abs/2111.05193, 2021.

[Yul27] George Udny Yule. On a method of investigating periodicities disturbed

series, with special reference to wolfer’s sunspot numbers. Philosophical

Transactions of the Royal Society of London. Series A, Containing Papers of a

Mathematical or Physical Character, 226(636-646):267–298, 1927.

X

List of Figures

1.1 Seoul Rental Bike Data: Trend and seasonality . 5

1.2 McKinsey & Company: Spreadsheets still the most used method in industry . . 8

1.3 Real sales of popular brand beer . 10

1.4 Monthly sparse demand of auto spare part (Id: 10055165) 11

2.1 Forecasting example for the auto spare part presented in Fig. (1.4) via Simple

Exponential Smoothing . 29

2.2 Perceptron . 37

2.3 Simple Neural Network . 37

2.4 Deep Neural Network . 37

2.5 Vanilla RNN . 38

2.6 Unrolled RNN . 39

2.7 Basic LSTM layer . 41

2.8 Schema of the Encoder-Decoder architecture . 41

3.1 Example of hierarchical time series . 47

3.2 Poisson distribution . 48

3.3 Negative Binomial distribution . 49

3.4 Syntetos et al. [SBC05] demand patterns categorization 52

3.5 Demand patterns categorization with variability 53

3.6 Histogram of a sparse demand presented in Fig. 1.4: highlight optimization

targets of RMSE and MAE. 57

3.7 Parts dataset: time series example and aggregation. 61

3.8 Summary of the DeepAR model architecture: training & prediction 65

3.9 Summary of the Deep State Space Models architecture: training & prediction . 69

3.10 The N-Beats architecture . 71

3.11 Lokad’s forecasting engine evolution. 76

4.1 Computational Graph . 85

XI

LIST OF FIGURES

4.2 Differentiable vs Probabilistic Programming . 96

5.1 LSTM cell with gates highlighted . 101

5.2 PES: LSTM analogy . 105

5.3 PES “cell”: (Left) Condensed view. (Right) Shared seasonality. 106

5.4 Summary of the proposed model: training . 110

5.5 Summary of the proposed model: prediction . 113

XII

List of Tables

3.1 Parts’ categorization per Syntetos et al. 61

3.2 M4 dataset composition. 63

3.3 M4 Hourly categorization, following Syntetos et al. [SBC05] 63

4.1 Evaluation trace for the function presented in Eq. (4.1). 84

4.2 Evaluation trace for the function presented in Eq. (4.1). 85

4.3 Forward mode evaluating the derivative for the function in Eq. (4.1). 86

4.4 Forward mode evaluating the derivative for the function in Eq. (4.1). 89

5.1 Seasonal granularity: for each frequency we can initialize from one to several

frequency-dependent seasonal profiles (marked with * in the table). Abbrevi-

ations stand for: Hour-of-the-Day; Day-of-the-Week; Day-of-the-Year; Week-

of-the-Year; Month-of-the-Year; Quarter-of-the-Year 100

5.2 Benchmark hardware specifitions. 115

5.3 Parts: SotA models hyperparameters. 116

5.4 Parts: Accuracy metrics . 117

5.5 Parts: Average training time on the benchmark machines in Tab. 5.2. 117

5.6 M4: SotA models hyperparameters. 118

5.7 M4 Hourly: Accuracy metrics . 119

5.8 M4: Average training time on the benchmark machines in Tab. 5.2. 119

XIII

	Contents
	Introduction
	AI & Supply Chain Management
	Structure of the manuscript
	Summary

	Time series analysis and forecasting
	Time series analysis
	Structural time series
	Differencing

	Time series forecasting
	Co-variates or predictors
	Metrics and loss functions
	Problem Statement

	Shallow solutions
	Naïve method
	Exponential smoothing and its variants
	AR(I)MA and its variants
	State Space Models

	Neural Architectures
	Summary

	Demand forecasting
	Introduction
	Hierarchical and cross-sectional
	Count time series
	Erratic, Lumpy, Smooth & Intermittent series
	Bullwhip effect
	Makridakis competitions
	Metrics

	Datasets
	The Part dataset
	The M4 competition dataset

	State-of-the-Art
	Deep auto-regressive recurrent networks
	Deep state space models
	Neural basis expansion analysis

	Research overview
	At Lokad
	Envision
	The forecasting engine evolution

	Summary

	Automatic Differentiation & Differentiable Programming
	Introduction
	Forward Mode
	Dual Numbers

	Reverse Mode
	Automatic Differentiation
	On the computational subject
	On the memory management
	In Machine Learning frameworks
	Differentiable Programming

	At Lokad
	Summary

	Probabilistic exponential smoothing for demand forecasting
	Introduction
	An LSTM analogy
	Context & state vectors
	Operators

	Model
	Parameters, encoding & initialization
	Multiple seasonality
	Shared seasonality
	Likelihood model
	Training
	Prediction

	Results

	Conclusions
	Future perspectives

	List of Figures
	List of Tables

