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Context

Figure: Classic Machine Learning Pipeline.
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Context

costly data transfer (Schüle 2019)

ML libraries built for computer vision, NLP . . .
−→ inadapted to relational problems

Figure: Classic Machine Learning Pipeline.
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Context

Figure: Classic Machine Learning Pipeline.
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Context

Figure: Proposed Pipeline.
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Context

Many Machine Learning methods are based on gradient methods.

Figure: Gradient Descent, source (Hutson )

−→ To optimize models, relational queries
differentiation is missing (Schüle 2019)
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Context

Differentiating Relational Queries⇔ Derivative of the Relational Queries

"

This is not differential dataflow (Mcsherry 2021)
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Context

Figure: What we are looking for
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Formalization

For the rest of the presentation, optimisation means minimisation and is
allowed through gradient descent.

x? = arg min
x

f (x)

Figure: Gradient Descent, source (Hutson )

f is called loss
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Formalization

We want to minimize (and thus compute the gradient of ):

For that we need:

a framework

constraints on the query
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Formalization

Minimization is only possible on scalar.

Loss =
∑
i∈Obs

lossi =
∑
i∈Obs

f (datai )

Constraint 1

Loss is computed line by line.
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Example

Let’s make it concrete with the Chicago taxi trip dataset.

Figure: Chicago trips dataset, source (Chicago )
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Example

Objective: explain the trip’s tip with distance and company ”quality”.

With Linear Regression as the machine learning model.
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Linear Regression on the Chicago dataset

Model

Tipestimated = acompany × distance + b

One slope per company; Intercept is shared among all the taxis.

Figure: Model
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Approach

Comparing the matrix approach (ML Libraries) and
relational one
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Approach

Figure: Matrix approach

(M.A) ◦ X + b

◦ is the point-wise product
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Approach

Figure: Relational approach
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Approach

Figure: Matrix approach

Figure: Relational approach
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Linear Regression on the Chicago dataset

Model

Tipestimated = acompany × distance + b

In SQL it gives
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SQL query of our model.
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Formalization

"Trips = Observations

Loss =
∑

t∈Trips
losst =

∑
t∈Trips

f (datat) =
∑

t∈Trips
(acompt × distt + b − tipt)

2

with

f (a, x , b, y) = (ax + b − y)2

Then it is feasible to compute gradients!

∂f

∂a
;

∂f

∂x
;

∂f

∂b
;

∂f

∂y

Constraint 2

f has to be differentiable.
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Formalization

Figure: Inputs origin.
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Formalization

Figure: Inputs origin.
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SQL query of our model.
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Approach

Q

Q’

GT × f

GT × f ′

Figure: Path to Differentiating
Relational Queries.

Q : query
GT : tables graph
f : loss function
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Tables Relations

Definition 1 (Broadcast)

Let’s note ”TA −→ TB” when the primary key of TA is a foreign key in
TB . It is said that TA broadcasts into TB .

Tables used in the query with the relationship −→ forms a graph GT .

Companies Trips

Figure: Graph from our linear regression model.
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Tables Relations

Figure: Inputs origin.
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Tables Relations

Let be

T a table used in the query

T .A be a column of T

a the input of f representing T .A

If T (transitively) broadcasts into Observations then a the input of f
representing T .A is a scalar.

Companies Trips

Figure: Graph from our linear
regression model.

Tipestimated = acompany × distance + b
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Approach

Q

Q’

GT × f

GT × f ′

AD

Figure: Path to Differentiating
Relational Queries.

Q : query
GT : tables graph
f : loss function
AD : Automatic Differentiation
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Automatic Differentiation

P a program that apply the mathematical function f to its inputs.

Automatic Differentiation constructs program the program P ′ that apply
f ′ to its inputs.

P

P ′

f

f ′

Figure: Automatic Differentiation.
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Automatic Differentiation

Fortran, C: Tapenade

Python: Tangent, Myia

Julia: Zygote

F#: DiffSharp

. . .

not differentiating a specific programming language.

define a narrowed programming language: ADSL. Similar to
(Abadi 2019) (Hu 2020) (Mak 2020).

ADSL is closed by differentiation
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Automatic Differentiation compilation

We can use this pipeline to differentiate a function written in any
programming language You just need to pay the price of compilation.
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Implementation

This work has been implemented at Lokad:

on the DSL Envision

live in production

Optimization through gradient descent is used daily and triggers orders on
millions of SKUs.
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Conclusion

In this work we’ve presented a framework on automatic differentiation on
relational queries.

Q

Q’

GT × f

GT × f ′

Figure: Path to Differentiating Relational Queries.
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Conclusion

This will unlock ML model construction and optimisation in databases.

Figure: Proposed Pipeline.
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Conclusion

Thanks for listening!
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In-Database Machine Learning: Gradient Descent and Tensor Algebra for Main Memory Database Systems. In BTW,
2019.

55 / 55

https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew
https://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy


Appendix

56 / 55



Demo

Link to an example
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https://go.testing.lokad.com/envision/editor/21741


ADSL
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ADSL
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PolyStar

Figure: PolyStar
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Realtional versus Math

Figure: Realtional - Math decomposition
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