Differentiating Relational Queries

PhD Workshop at VLDB21 Paul Peseux *Tutors:* T.Paquet, M.Berar, V.Nicollet

August 16, 2021

Outline

2 Formalization

- 3 Tables Relations
- 4 Automatic Differentiation
- 5 Implementation

Outline

Context

2 Formalization

- 3 Tables Relations
- 4 Automatic Differentiation

5 Implementation

6 Conclusion

Figure: Classic Machine Learning Pipeline.

Context

• costly data transfer (Schüle 2019)

۲

Figure: Classic Machine Learning Pipeline.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへで

Context

- costly data transfer (Schüle 2019)
- ML libraries built for computer vision, NLP
 - \longrightarrow inadapted to relational data

Figure: Classic Machine Learning Pipeline.

Figure: Classic Machine Learning Pipeline.

Figure: Proposed Pipeline.

Many Machine Learning methods are based on gradient methods.

Figure: Gradient Descent, source (Hutson)

Many Machine Learning methods are based on gradient methods.

Figure: Gradient Descent, source (Hutson)

→ To optimize models, **relational queries differentiation** is missing (Schüle 2019)

Differentiating Relational Queries \Leftrightarrow Derivative of the Relational Queries

\wedge

This is **not** differential dataflow (Mcsherry 2021)

SELECT X FROM Observations should give SELECT 1 FROM Observations

SELECT X * X FROM Observations should give SELECT 2 * X FROM Observations

Figure: What we are looking for

Outline

Context

2 Formalization

- 3 Tables Relations
- 4 Automatic Differentiation

5 Implementation

6 Conclusion

For the rest of the presentation, optimisation means minimisation and is allowed through gradient descent.

Figure: Gradient Descent, source (Hutson)

f is called loss

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のの()

We want to minimize (and thus compute the gradient of):

SELECT sum(loss) FROM Observations

For that we need:

- a framework
- constraints on the query

Minimization is only possible on scalar.

$$Loss = \sum_{i \in Obs} loss_i = \sum_{i \in Obs} f(data_i)$$

Minimization is only possible on scalar.

$$Loss = \sum_{i \in Obs} loss_i = \sum_{i \in Obs} f(data_i)$$

Constraint 1

Loss is computed line by line.

Example

Let's make it concrete with the Chicago taxi trip dataset.

Trips			
taxild	Company	distance	Tips
d904764719c56cfb36906cb74c	Choice Taxi Association	0.7	2.0
11f73b08790612efe341cf8cf69	Choice Taxi Association	1.2	2.7
e61ce97d61bec30e506e2ff56ea	Chicago Medallion Management	15.1	5.0
74605d6aa0c8ba08190a5824f7	Blue Ribbon Taxi Association Inc.	0.2	3.7
abb33898b8d70d22237631f6bd	Chicago Medallion Management	3.4	3.1
e6a8d59b08b735bf949c799157	Taxi Affiliation Services	0.2	2.6
d24314a66ebc6319a50cc335d6	Taxi Affiliation Services	0.1	2.3
9d20d7617e35a8d763ca0bbe3b	Northwest Management LLC	4.5	3.0
1226e3d8b86299171525b37f43	Choice Taxi Association	0.3	1.1
7985168ea616aa1c4437d4ebe4	KOAM Taxi Association	13.2	5.7
365689b9f3107b807470fe16b7	Taxi Affiliation Services	0.2	1.4
8c4cce532e3fa081753ea28c1b	Taxi Affiliation Services	1.3	20.0
627de0f7c9251f9731fe27af6bb	Taxi Affiliation Services	2.7	2.0
705cc88d7a216145f6c762aa70	Dispatch Taxi Affiliation	3.7	2.3
01dfe8a384fbd91738442964e7	Dispatch Taxi Affiliation	1.2	4.0
493b6af5931ea2c7c6a82d9d6e	Taxi Affiliation Services	0.9	7.0
e5a4715f2ec431f404f71c7e4d0	Choice Taxi Association	2.7	1.0
9aabfe03b5b0f6d742bc86499ea	Choice Taxi Association	13.4	13.0
e61ce97d61bec30e506e2ff56ea	Chicago Medallion Management	2.2	2.0

Figure: Chicago trips dataset, source (Chicago)

Objective: *explain the trip's tip with distance and company "quality"*.

With Linear Regression as the machine learning model.

Linear Regression on the Chicago dataset

Model

$$\mathit{Tip}_{\mathit{estimated}} = \mathit{a}_{\mathit{company}} imes \mathit{distance} + \mathit{b}$$

One slope per company; Intercept is shared among all the taxis.

20 / 55

Comparing the matrix approach (ML Libraries) and relational one

Figure: Matrix approach

Approach

Figure: Relational approach

Figure: Relational approach

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Figure: Matrix approach

Linear Regression on the Chicago dataset

Model

$$\mathit{Tip}_{estimated} = \mathit{a}_{company} imes \mathit{distance} + \mathit{b}$$

In SQL it gives

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三日 の Q () 25 / 55

```
WITH TaxisWithSlope AS (
  SELECT *
  FROM Taxis
  INNER JOIN Companies
      ON Taxis.company = Companies.company)
SELECT
  tripId,
  POWER(Estimated - tip, 2) AS Loss
  FROM (
    SELECT
     Trips.*,
      TaxisWithSlope.slope * Trips.distance + @intercept AS Estimated
    FROM Trips
    INNER JOIN TaxisWithSlope
        ON Trips.taxiId = TaxisWithSlope.taxiId )
 AS Observations;
```

SQL query of our model.

$\underline{\wedge}\mathsf{Trips} = \mathsf{Observations}$

$$Loss = \sum_{t \in Trips} loss_t = \sum_{t \in Trips} f(data_t) = \sum_{t \in Trips} (a_{comp_t} imes dist_t + b - tip_t)^2$$

with

$$f(a, x, b, y) = (ax + b - y)^2$$

< □ ▶ < 큔 ▶ < 글 ▶ < 글 ▶ ∃ = 의 Q (~ 27 / 55

$\underline{\wedge}\mathsf{Trips} = \mathsf{Observations}$

$$Loss = \sum_{t \in Trips} loss_t = \sum_{t \in Trips} f(data_t) = \sum_{t \in Trips} (a_{comp_t} \times dist_t + b - tip_t)^2$$

with

$$f(a, x, b, y) = (ax + b - y)^2$$

Then it is feasible to compute gradients!

$$\frac{\partial f}{\partial a}$$
; $\frac{\partial f}{\partial x}$; $\frac{\partial f}{\partial b}$; $\frac{\partial f}{\partial y}$

Constraint 2

f has to be differentiable.

$f(a,x,b,y) = (ax + b - y)^{2}$

Figure: Inputs origin.

Figure: Inputs origin.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆□ ■ ● ● ●

```
WITH TaxisWithSlope AS (

SELECT *

FROM Taxis

INNER JOIN Companies

ON Taxis.company = Companies.company)
```



```
SELECT
tripId,
POWER(Estimated - tip, 2) AS Loss
FROM (
SELECT
Jrips.*,
TaxisWithSlope.slope * Trips.distance + @intercept AS Estimated
FROM Trips
INNER JOIN TaxisWithSlope
ON Trips.taxiId = TaxisWithSlope.taxiId )
AS Observations;
```

SQL query of our model.

Figure: Path to Differentiating Relational Queries.

Q : query G_T : tables graph f : loss function

Outline

Context

2 Formalization

- 3 Tables Relations
 - 4 Automatic Differentiation

5 Implementation

6 Conclusion

Figure: Path to Differentiating Relational Queries.

Q: query G_T : tables graph f: loss function

Definition 1 (Broadcast)

Let's note " $T_A \longrightarrow T_B$ " when the primary key of T_A is a foreign key in T_B . It is said that T_A broadcasts into T_B .

Definition 1 (Broadcast)

Let's note " $T_A \longrightarrow T_B$ " when the primary key of T_A is a foreign key in T_B . It is said that T_A broadcasts into T_B .

Tables used in the query with the relationship \longrightarrow forms a graph $\mathcal{G}_{\mathcal{T}}$.

Definition 1 (Broadcast)

Let's note " $T_A \longrightarrow T_B$ " when the primary key of T_A is a foreign key in T_B . It is said that T_A broadcasts into T_B .

Tables used in the query with the relationship \longrightarrow forms a graph $\mathcal{G}_{\mathcal{T}}$.

Figure: Graph from our linear regression model.

Figure: Inputs origin.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆□ ■ ● ● ●

Tables Relations

Let be

- T a table used in the query
- T.A be a column of T
- a the input of f representing T.A

If T (transitively) broadcasts into *Observations* then *a* the input of *f* representing T.A is a **scalar**.

Tables Relations

Let be

- T a table used in the query
- T.A be a column of T
- a the input of f representing T.A

If T (transitively) broadcasts into *Observations* then *a* the input of *f* representing T.A is a **scalar**.

 $\mathit{Tip}_{\mathit{estimated}} = \mathit{a}_{\mathit{company}} imes \mathit{distance} + \mathit{b}$

Figure: Graph from our linear regression model.

Figure: Path to Differentiating Relational Queries.

Q : query G_T : tables graph f : loss function

Outline

Context

2 Formalization

- 3 Tables Relations
- 4 Automatic Differentiation

5 Implementation

6 Conclusion

Figure: Path to Differentiating Relational Queries.

- Q: query G_T : tables graph
- f : loss function
- AD : Automatic Differentiation

Automatic Differentiation

P a program that apply the mathematical function f to its inputs. Automatic Differentiation constructs program the program P' that apply f' to its inputs.

Automatic Differentiation

P a program that apply the mathematical function f to its inputs. Automatic Differentiation constructs program the program P' that apply f' to its inputs.

Figure: Automatic Differentiation.

- Fortran, C: Tapenade
- Python: Tangent, Myia

- Julia: Zygote
- F#: DiffSharp
- . . .

- Fortran, C: Tapenade
- Python: Tangent, Myia

- Julia: Zygote
- F#: DiffSharp

• . . .

- not differentiating a specific programming language.
- define a narrowed programming language: **ADSL**. Similar to (Abadi 2019) (Hu 2020) (Mak 2020).

ADSL is closed by differentiation

Automatic Differentiation compilation

We can use this pipeline to differentiate a function written in any programming language *You just need to pay the price of compilation*.

Outline

Context

2 Formalization

- 3 Tables Relations
- 4 Automatic Differentiation

5 Implementation

Conclusion

This work has been implemented at Lokad:

- on the DSL Envision
- live in production

Optimization through gradient descent is used daily and triggers orders on millions of SKUs.

Outline

Context

2 Formalization

- 3 Tables Relations
- 4 Automatic Differentiation

5 Implementation

In this work we've presented a framework on automatic differentiation on relational queries.

Figure: Path to Differentiating Relational Queries.

Conclusion

This will unlock ML model construction and optimisation in databases.

Figure: Proposed Pipeline.

Thanks for listening!

- [Abadi 2019] Martín Abadi et Gordon Plotkin. A simple differentiable programming language. Proceedings of the ACM on Programming Languages, vol. 4, pages 1–28, 12 2019.
- [Chicago] City Of Chicago. image. https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew. Accessed: 2021-07-13.
- [Hu 2020] Y. Hu, L. Anderson, Tzu-Mao Li, Q. Sun, N. Carr, Jonathan Ragan-Kelley et F. Durand. DiffTaichi: Differentiable Programming for Physical Simulation. ArXiv, vol. abs/1910.00935, 2020.
- [Hutson] Matthew Hutson. image. https://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy. Accessed: 2021-07-15.
- [Mak 2020] Carol Mak et C. Ong. A Differential-form Pullback Programming Language for Higher-order Reverse-mode Automatic Differentiation. ArXiv, vol. abs/2002.08241, 2020.
- [Mcsherry 2021] Frank Mcsherry, Derek Murray, Rebecca Isaacs et Michael Isard. Differential dataflow. 08 2021.
- [Schüle 2019] Maximilian E. Schüle, Frédéric Simonis, Thomas Heyenbrock, A. Kemper, Stephan Günnemann et T. Neumann. In-Database Machine Learning: Gradient Descent and Tensor Algebra for Main Memory Database Systems. In BTW, 2019.

Appendix

56 / 55

Link to an example

ADSL

 $\langle S \rangle$ $| \langle v \leftarrow e \rangle$ $| \langle Cond (v \Psi P_T P_E \Phi) \rangle$ $| \langle For (\chi P \Xi) \rangle$ Variable assignment Conditional Loop $\langle Return v \rangle$ Output of a program $\langle e \rangle$ $\langle v \rangle$ Variable $\langle f \rangle$ Scalar $\langle b \rangle$ Boolean $\langle v + w \rangle$ Variable Addition $\langle Call1 op v \rangle$ Function Call $\langle Call2 op v w \rangle$ Function Call (2 parameters) (Param i) Parameter access (Consti) Constant access Broadcast Projector Aggregation Projector Predicate ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへの

$$\langle Pred \rangle :::= .$$

$$| \langle And v w \rangle$$

$$| \langle Or v w \rangle$$

$$| \langle Not v \rangle$$

$$| \langle v < w \rangle$$

$$| \langle v \le w \rangle$$

Figure: PolyStar

Figure: Realtional - Math decomposition