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Context

o costly data transfer (Schiile 2019)
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Context

o costly data transfer (Schiile 2019)
@ ML libraries built for computer vision, NLP . ..
— inadapted to relational data
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Context

Many Machine Learning methods are based on gradient methods.
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Figure: Gradient Descent, source (Hutson )
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Context

Many Machine Learning methods are based on gradient methods.
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Figure: Gradient Descent, source (Hutson )

—— To optimize models, relational queries
differentiation is missing (Schiile 2019)

10/55



Differentiating Relational Queries <= Derivative of the Relational Queries

This is not differential dataflow (Mcsherry 2021)
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SELECT X FROM Observations
should give
SELECT 1 FROM Observations

SELECT X * X FROM Observations
should give
SELECT 2 * X FROM Observations

Figure: What we are looking for
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e Formalization
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Formalization

For the rest of the presentation, optimisation means minimisation and is
allowed through gradient descent.

x* = arg min  f(x)
X
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Figure: Gradient Descent, source (Hutson )

f is called loss
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Formalization

We want to minimize (and thus compute the gradient of):

SELECT sum(loss) FROM Observations

For that we need:
@ a framework

@ constraints on the query
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Formalization

Minimization is only possible on scalar.

Loss = Z loss; = Z f(data;)

i€Obs i€Obs
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Formalization

Minimization is only possible on scalar.

Loss = Z loss; = Z f(data;)

i€Obs i€Obs

Loss is computed line by line. l
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Example

Let’s make it concrete with the Chicago taxi trip dataset.
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Figure: Chicago trips dataset, source (Chicago )
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Objective: explain the trip's tip with distance and company "quality”.

With Linear Regression as the machine learning model.
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Linear Regression on the Chicago dataset
Model

Tipestimated = dcompany X distance + b

One slope per company; Intercept is shared among all the taxis.

distance

Figure: Model
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Approach

Comparing the matrix approach (ML Libraries) and
relational one
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Approach
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Figure: Matrix approach
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Approach
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Figure: Relational approach
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Approach
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Figure: Matrix approach

24 /55



Linear Regression on the Chicago dataset

Model

Tipestimated = dcompany X distance + b

In SQL it gives
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WITH TaxisWithSlope AS (
SELECT *
FROM Taxis
INNER JOIN Companies
ON Taxis.company = Companies.company)

SELECT
tripId,
POWER(Estimated - tip, 2) AS Loss
FROM (
SELECT
Trips.*,
TaxisWithSlope.slope * Trips.distance + @intercept AS Estimated
FROM Trips
INNER JOIN TaxisWithSlope
ON Trips.taxild = TaxisWithSlope.taxild )
AS Observations;

SQL query of our model.
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Formalization

A\Trips = Observations

Loss = Z loss; = Z f(datas) = Z (acomp, x disty + b — 1.“ipt)2

te Trips te Trips te Trips

with

f(a,x,b,y) = (ax + b —y)’
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Formalization

A\Trips = Observations

Loss = Z loss; = Z f(datas) = Z (acomp, x disty + b — 1.“ipt)2

te Trips te Trips te Trips
with
f(a,x, b,y) = (ax + b —y)?
Then it is feasible to compute gradients!

of of of  Of
da ' Ox ' 9b ' Oy

f has to be differentiable. l
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Formalization

f(a,x,b,y) = (ax + b - y)?2

Figure: Inputs origin.
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Formalization

Trips

f(a,x,b,y) = (ax + b - y)?2

SN

Companies Scalar

Figure: Inputs origin.
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WITH TaxisWithSlope AS (
SELECT *
FROM Taxis
INNER JOIN Companies
ON Taxis.company = Companies.company)

SELECT
_tc1pId __________________
{ PONER (Estinated - tip, 2)!AS Loss
SELECT
TJ:uas,_ __________________________________________
-Tax1sW1thSlope slope * Trips.distance + @1ntercept.AS Estimated

i INNER JOIN Tax1sW1thSlope '
' ON Trips.taxild = TaxisWithSlope.taxiId ;)

AS Observations;

SQL query of our model.

31/55



Approach

Ggr x f

Q : query
v Gt : tables graph
f : loss function

S CER TS

<« G1 x f/

Figure: Path to Differentiating
Relational Queries.
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© Tables Relations
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Approach

gr x f

Q : query
v Gt : tables graph
f : loss function

S CER TS

<« G x f/

Figure: Path to Differentiating
Relational Queries.
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Tables Relations

Definition 1 (Broadcast)

Let's note " T4 — Tg" when the primary key of T4 is a foreign key in
Tg. It is said that T4 broadcasts into Tg.
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Tables Relations

Definition 1 (Broadcast)

Let's note " T4 — Tg" when the primary key of T4 is a foreign key in
Tg. It is said that T4 broadcasts into Tg.

Tables used in the query with the relationship — forms a graph Gr.
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Tables Relations

Definition 1 (Broadcast)

Let's note " T4 — Tg" when the primary key of T4 is a foreign key in
Tg. It is said that T4 broadcasts into Tg.

Tables used in the query with the relationship — forms a graph Gr.

Companies

Figure: Graph from our linear regression model.
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Tables Relations

Trips

f(a,x,b,y) = (ax + b - y)?2

SN

Companies Scalar

Figure: Inputs origin.
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Tables Relations

Let be
@ T a table used in the query
@ T.Abeacolumnof T
@ a the input of f representing T.A

If T (transitively) broadcasts into Observations then a the input of f
representing T.A is a scalar.
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Tables Relations

Let be

@ T a table used in the query
@ T.Abeacolumnof T
@ a the input of f representing T.A

If T (transitively) broadcasts into Observations then a the input of f
representing T.A is a scalar.

Companies
Tipestimated = Acompany X distance + b

Figure: Graph from our linear
regression model.
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Approach

Ggr x f

Q : query
v Gt : tables graph
f : loss function

S CER TS

<« G1 x f/

Figure: Path to Differentiating
Relational Queries.
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e Automatic Differentiation

42/55



Approach

gr xf
' Q : query
: AD Gr : tables graph
V \ f : loss function

AD : Automatic Differentiation
«<—— G x f’

Figure: Path to Differentiating
Relational Queries.
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Automatic Differentiation

P a program that apply the mathematical function f to its inputs.

Automatic Differentiation constructs program the program P’ that apply
f’ to its inputs.
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Automatic Differentiation

P a program that apply the mathematical function f to its inputs.

Automatic Differentiation constructs program the program P’ that apply
f’ to its inputs.

G

Figure: Automatic Differentiation.
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Automatic Differentiation

o Julia: Zygote
o F+#: DiffSharp

@ Fortran, C: Tapenade

@ Python: Tangent, Myia
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Automatic Differentiation

o Julia: Zygote
o F+#: DiffSharp

@ Fortran, C: Tapenade

@ Python: Tangent, Myia

@ not differentiating a specific programming language.

@ define a narrowed programming language: ADSL. Similar to
(Abadi 2019) (Hu 2020) (Mak 2020).

ADSL is closed by differentiation
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Automatic Differentiation compilation

..‘

Any Programming Any Programming
Language Language

We can use this pipeline to differentiate a function written in any
programming language You just need to pay the price of compilation.
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© Implementation
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Implementation

This work has been implemented at Lokad:
@ on the DSL Envision

@ live in production

Optimization through gradient descent is used daily and triggers orders on
millions of SKUs.
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@ Conclusion
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Conclusion

In this work we've presented a framework on automatic differentiation on
relational queries.

Gr xf

Y

gr x f’

Figure: Path to Differentiating Relational Queries.
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Conclusion

This will unlock ML model construction and optimisation in databases.
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Figure: Proposed Pipeline.
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Conclusion

Thanks for listening!
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Demo

Link to an example
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https://go.testing.lokad.com/envision/editor/21741
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Orders
Upstream
Cross
Downstream
Week

Figure: PolyStar
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Realtional versus Math

Relational Maths
Aggre!gation
!

JOIN Scalar Map

Figure: Realtional - Math decomposition
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