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différentiation automatique, descente de gradient stochastique, données catégorielles

Résumé en Français

Cette thèse de doctorat présente trois contributions dans le domaine de la programma-
tion différentiable axée sur les données relationnelles. Les données relationnelles sont
courantes dans des secteurs tels que la santé et la logisitque, où les données sont souvent
organisées en tableaux structurés ou bases de données. Les approches traditionnelles de
l’apprentissage automatique ont du mal às’appliquer sur de telles données, tandis que
les modèles d’apprentissage automatique de type bôıte blanche sont plus adaptés mais
également plus difficiles à développer.
La programmation différentiable offre une solution en traitant les requêtes sur les bases

de données relationnelles comme des programmes différentiables, permettant ainsi le
développement de modèles d’apprentissage automatique de type bôıte blanche qui peu-
vent travailler directement sur les données relationnelles. L’objectif principal de cette
recherche est d’explorer l’application de l’apprentissage automatique aux données rela-
tionnelles en utilisant des techniques de programmation différentiable.
La première contribution de la thèse introduit une couche différentiable dans les lan-

gages de programmation relationnelle, autant d’un point de vue théorique que d’un
point de vue pratique. Le langage de programmation Adsl a été créé pour effectuer la
différentiation et transcrire les opérations relationnelles d’une requête. Le langage Envi-
sion a été enrichi d’une couche de programmation différentiable, permettant le développement
de modèles exploitant les données relationnelles dans un environnement de langage de
programmation relationnelle natif.
La deuxième contribution développe un estimateur de gradient appelé GCE, conçu

pour les caractéristiques catégorielles surreprésentées dans les données relationnelles.
GCE est démontré comme étant utile sur divers ensembles de données catégorielles et
modèles, et a été implémenté pour les modèles d’apprentissage profond. GCE est intégré
en tant qu’estimateur de gradient natif dans la couche de programmation différentiable
d’Envision, facilité par la première contribution de cette thèse.
La troisième contribution développe un estimateur de gradient généralisé appelé Stochas-

tic Path Automatic Differentiation (SPAD), qui tire sa stochasticité de la décomposition
du code. SPAD introduit l’idée de rétro-propager une fraction du gradient pour réduire
la consommation de mémoire lors des mises à jour des paramètres. La mise en œuvre de
cette approche d’estimation de gradient est rendue possible par les décisions de conception
lors de la différentiation d’Adsl.
Cette recherche a des implications significatives pour les industries reposant sur les

données relationnelles, en débloquant de nouvelles perspectives et en améliorant la prise
de décision en appliquant des modèles d’apprentissage automatique de type bôıte blanche
aux données relationnelles en utilisant des techniques de programmation différentiable.

Un exposé en 3 minutes et en français de cette thèse est disponible ici1.

1https://youtu.be/oTirPItT5xk
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Résumé en Anglais

This PhD thesis, titled presents three contributions to the field of differentiable program-
ming with a focus on relational data. Relational data is prevalent in industries such
as healthcare and supply chain, where data is often organized in structured tables or
databases. Traditional machine learning approaches struggle with handling relational
data, while white box machine learning models are better suited but challenging to de-
velop.
Differentiable programming offers a potential solution by treating queries on relational

databases as differentiable programs, enabling the development of white box machine
learning models that can directly reason about relational data. This research’s primary
objective is to explore the application of machine learning to relational data using differ-
entiable programming techniques.
The first contribution of the thesis introduces a differentiable layer into relational pro-

gramming languages, both theoretically and practically. The Adsl programming language
was created to perform differentiation and transcribe relational operations of a query. The
domain-specific language Envision has been augmented with differentiable programming
capabilities, allowing the development of models that leverage relational data in a native
relational programming language environment.
The second contribution develops a novel gradient estimator called GCE, designed for

categorical features over represented in relational data. GCE is demonstrated to be useful
on various categorical datasets and models and has been implemented for deep learning
models. GCE is also integrated as the native gradient estimator in the differentiable
programming layer of Envision, facilitated by the first contribution of this thesis.
The third contribution develops a generalized gradient estimator called Stochastic Path

Automatic Differentiation (SPAD), which derives its stochasticity from code decomposi-
tion. SPAD introduces the idea of backpropagating a fraction of the gradient to reduce
memory consumption during parameter updates. The implementation of this gradient
estimation approach is made possible by the design decisions during the differentiation
of Adsl.
This research has significant implications for industries relying on relational data, un-

locking new insights and improving decision-making by applying white box machine learn-
ing models to relational data using differentiable programming techniques.
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Introduction

Context

In many domains, the need for machine learning models to handle relational data is
becoming increasingly important. This is particularly true in fields such as healthcare or
supply chain, where data often comes in the form of structured tables or databases.
This PhD research project is initiated and funded by Lokad with the support of ANRT

through a CIFRE contract. Lokad is a French company that specializes in supply chain
optimization for businesses. Lokad is engaged in a diverse range of businesses, each
with their unique set of supply chain challenges and constraints. They help businesses
to forecast their demand, manage their inventory levels, and optimize their ordering and
delivery processes. Their software solutions leverage data to create models and algorithms
that provide real-time recommendations for businesses to optimize their supply chain
operations [2]. To do so, Lokad heavily relies on machine learning models [3] that rely on
on historical data to predict the future, which is known as the supervised setting. The
data used in supply chain optimization is often relational, meaning that it consists of
tables of data that are interconnected in various ways [4, 5]. For example, a business’s
inventory data might be connected to their sales data, which is in turn connected to their
order data, etc. In order to retrieve the desired information, domain experts query these
data structures.
Complex and interrelated datasets present a significant challenge when applying con-

ventional machine learning techniques [6,7], such as deep learning, to optimization prob-
lems on relational data. Conventional deep learning methods are frequently over param-
eterized, and fail to properly handle categorical attributes, which can lead to suboptimal
solutions for tabular data. Furthermore, these approaches typically involve black-box
models, which can be technically challenging to adapt to specific problems. Additionally,
most existing machine learning frameworks are not designed for relational data, which
makes challenging their application to such databases. Lastly, large deep learning mod-
els need extensive resources and highly qualified people to train them, which might be
prohibitive especially when the model has to train on new data on a daily basis [8].
In contrast, simple and white-box machine learning models can be tailored for individ-

ual problems encountered with relational data. These models can be explicitly designed
to capture complex relationships between data points, making them more suitable for
relational data. Moreover, white-box models are more interpretable, enabling domain
experts to understand the model’s inner workings and use that knowledge to make better
decisions [9]. Finally, the use of such simple models enables easy daily training, which
represents a breakthrough feature for a company like Lokad by making it reactive and
constantly up to date. Developing white-box machine learning models for relational data
is a demanding task, necessitating a deep understanding of both the domain and under-
lying data structures [10]. The primary challenge lies in creating tools that facilitate the
construction and optimization of white-box models for relational data.
Differentiable programming offers a potential solution to this challenge. By writing
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differentiable programs on relational data as specific queries, it becomes feasible to build
and optimize models by querying directly the relational database, thus embedding the
optimization process in the database itself [11] This approach enables the development
of white-box machine learning models that leverage the rich relationships between data
points within a relational database. Applying white-box machine learning models to
relational data has the potential to uncover new insights and enhance decision-making
across various critical domains [12].
The primary objective of this research is to investigate the application of machine

learning to relational data using differentiable programming techniques.

Relational data and machine learning

Relational data, which is data organized in tables, is a common way to represent complex
and structured data in many industries, including healthcare, supply chain, and retail.
In these industries, relational data is often the primary form of data that is collected and
analyzed, and it plays a critical role in decision-making processes. This data is structured
into tables with relationships between them that it is possible to query in order to retrieve
the precise information we want.
However, in the modern machine learning research community, the focus has been

primarily on unstructured data, such as text, image, and audio data [6]. A possible
explanation for that is that unstructured data is often more abundant and easier to collect,
while relational data is often more complex to handle and requires specialized tools to
process. Additionally, many machine learning researchers come from computer science
or related fields where they may not have been exposed to the importance of relational
data in many industries. A possible solution to still apply conventional machine learning
to relational data would be to transform its structure and group relational data into one
raw big table. It might seem like a good idea at first glance because it would provide a
unified view of all the data in one place, making it easier to work with. However, this
approach has several drawbacks that make it a suboptimal solution [13].
Firstly, relational databases are designed to organize data in a way that minimizes

redundancy and maximizes efficiency. By grouping all the data into one big table, we
lose the benefits of normalization, which allows us to store data in a more compact and
efficient way. This can result in large amounts of duplicated data, leading to increased
storage requirements and slower query times. Secondly, working with a single large table
can make it more difficult to maintain data integrity and consistency. In a normalized
database, we can use the database characteristics to ensure that data is consistent and
accurate. With a large table, it can be more difficult to enforce such constraints, leading to
potential data quality issues. Finally, working with a large table can be more difficult for
data analysts and domain experts to understand and work with. This can limit the ability
to build effective models and make informed decisions based on the data. Therefore, while
grouping relational data into one raw big table may seem like a tempting solution at first,
it is not a good idea in practice due to the potential issues it can create. Instead, it is
better to organize the data into normalized tables that can be efficiently queried and
maintained, while also providing a clear and intuitive view of the data for analysts and
domain experts.
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Differentiable programming

Differentiable programming is a programming paradigm that has made machine learning
so popular, and has allowed the advent of deep learning as well [1,14,15]. The main idea
behind differentiable programming is that all functions that make up a model are dif-
ferentiable, which allows for end-to-end optimization using gradient-based methods [16].
While programming deals with programs that are not directly differentiable, they imple-
ment functions that are. A method to differentiate a program is presented in Figure 1.
Differentiable programming combines traditional programming with automatic differen-
tiation, allowing the construction of mathematical models that can be optimized using
gradient-based methods. Automatic differentiation works by decomposing complex func-
tions into elementary operations and applying the chain rule [17, 18] to calculate exact
gradients [19].
In machine learning, differentiable programming is essential for production-level sys-

tems as it allows domain experts to highlight their knowledge in a way that can be
integrated directly into the optimization process [20,21]. In traditional machine learning
approaches, domain experts would use their knowledge to create features that would be
fed into a model. However, this process is often time-consuming and can be limited by the
creativity and expertise of the domain expert. In contrast, differentiable programming
enables domain experts to directly incorporate their knowledge into the optimization
process without having to manually compute the derivatives of their models.

Program

Program’

Function

Function’

Figure 1.: Differentiable programming. A program implements a function, the derivative
of which is mathematically defined. Consequently, the derivative of the pro-
gram represents the program that corresponds to the function’s derivative.

One of the key advantages of differentiable programming is that it allows to build
complex models by composing simple building blocks [22] as it relies on automatic differ-
entiation. The composition of these building blocks creates a model that can be optimized
end-to-end using gradient-based methods. This approach allows us to build highly flexible
and customizable models that can be adapted to a wide range of tasks and datasets. Do-
main experts can contribute their knowledge by designing differentiable building blocks
that are specific to their field of expertise. These building blocks can then be easily inte-
grated into a larger model using differentiable programming. This can lead to significant
improvements in model performance and can also help to identify potential problems
with the model, solvable by fixing the corresponding block. Differentiable programming
can be viewed as an approach to adapt the model to the data, as opposed to altering the
data to conform to the requirements of a predetermined and inflexible model [23].
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Furthermore, differentiable programming allows for a more seamless integration be-
tween model development and production deployment. Since the differentiable program
can be optimized using gradient-based methods, it can be easily incorporated into a larger
system without the need for separate optimization and deployment stages.
In summary, differentiable programming is key in machine learning production as it

allows domain experts to directly encode their knowledge into the optimization process,
leading to improved model performance and a more seamless integration between devel-
opment and deployment. It represents a paradigm shift in how machine learning systems
are developed and deployed, enabling a tighter integration between domain expertise and
machine learning algorithms.

If differentiable programming were to be implemented in relational languages, numerous
challenges would arise. First, gradient-based methods are typically applied to numeri-
cal values, whereas relational data often contains categorical values. Special attention
must be given to such data types while performing gradient descent on white-box mod-
els. Second, careful consideration must be devoted to the computational resources used
while optimizing models created with differentiable programming tools. Although mem-
ory consumption for querying machine learning models is generally limited, optimizing
them during the training phase can be computationally intensive. Efficient techniques,
such as checkpointing, already exist [24]. This variable storage heuristic can result in
significant memory savings, albeit with an increased computational time. By leveraging
the construction of gradients facilitated by automatic differentiation systems in relational
programming languages, we could develop a novel gradient estimator that requires less
memory. Consequently, this would enable the execution of the same task more rapidly
or facilitate the processing of larger datasets.
The aforementioned points highlight the need for differentiable tools in database sys-

tems and the importance of developing efficient machine learning approaches for relational
data. Consequently, the title of this PhD thesis is:

A Differentiable Programming Approach for Optimization on Relational and Large
Datasets.

Contributions

The first contribution of this PhD thesis is the introduction of a differentiable layer
into relational programming languages, which is both theoretical and practical. The
theoretical work involved in this contribution includes properly defining differentiation
on relational queries, which requires the introduction of two main concepts: the PolyStar
and the TOTAL JOIN operator. The PolyStar is a specific way of viewing the tree made
up of the tables used in the query to be differentiated, which allows us to load only the
minimum amount of data for each observation. The TOTAL JOIN operator is a novel
join operator that enables us to construct the correct PolyStar relative to the query.
These two concepts facilitate the derivation of a query by an automatic differentiation
tool. To achieve this, we created our own programming language called Adsl, which is
designed to perform differentiation and easily transcribe the relational operations of a
query. Importantly, the derivative of a query can also be expressed as a query using
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Adsl and its automatic differentiation system. The relational domain-specific language of
Lokad called Envision has been augmented with differentiable programming capabilities
through the design, differentiation, and implementation of Adsl. Envision is engineered
by Lokad for the specific purpose of the predictive optimization of supply chains. Multiple
models leveraging the relational aspect of data have been developed and demonstrated in
a native relational programming language environment and ended up in production on a
daily basis at Lokad.
The second contribution of this PhD thesis is the development of a novel gradient es-

timator, named GCE, that is designed for categorical features that are over represented
in relational databases. This contribution was motivated by the underperformance of
deep learning methods on relational data due to incorrect handling of such data in gra-
dient estimation. The idea that ”a non-existing gradient is not a zero gradient” led to
the creation of GCE, which we demonstrate to be useful on several diverse categorical
datasets and models. We provide an implementation for deep learning models, as well.
Furthermore, GCE is integrated as the native gradient estimator in the differentiable
programming layer of Envision, which was made possible by the first contribution of this
PhD thesis.
The third contribution of this PhD thesis is the development of a generalized gradi-

ent estimator, where the stochasticity is derived from the code decomposition. Contrary
to the conventional view of stochastic gradient descent, which focuses on observations
and batches, we suggest backpropagating a fraction of the gradient to reduce memory
consumption during parameter updates. We introduce Stochastic Path Automatic Dif-
ferentiation (SPAD), a novel technique that can be regarded as a combination of dropout
and layer freezing within neural networks. The implementation of this gradient estima-
tion approach is also facilitated by the design decisions made during the differentiation
of Adsl.

Organization of the manuscript

This manuscript is separated into four chapters. Chapter I presents the first contribu-
tion of this PhD thesis, i.e. the process of differentiating relational queries. We begin
by discussing automatic differentiation foundations and its multiple implementation over
widespread programming languages. Next, we delve into the fundamentals of relational
queries, including relational algebra and query structures. Then, we propose a novel
approach to differentiating relational queries by decomposing the query into its mathe-
matical and its relational components. We then introduce Adsl, a dedicated programming
language designed for this purpose, along with its key concepts and automatic differen-
tiation capabilities. Adsl is a programming language specifically designed for automatic
differentiation, exhibiting two key properties: each variable is assigned only once and is
also accessed for reading exactly once. Finally, we discuss the implementation of Adsl,
its inclusion in Envision, a domain-specific language, and showcase examples of how this
approach can be applied in both toy and production settings. We end by providing
mathematical insights on the kind of model that can be created from relational query.
We emphasize the scan operator as an essential component of our tool of differentiable
queries.
Chapter II presents an overview of stochastic gradient descent. We start by examining

the basic concept of gradient descent, along with its analogy, notations, and convergence
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proof in smooth and convex cases. We also address its limitations, providing the mo-
tivation for incorporating stochasticity into the optimization process. Subsequently, we
discuss various optimizers, including Vanilla, Adagrad, and Adam, and their individual
properties. Next, we investigate the convergence guarantees associated with a generalized
adaptive optimizer, shedding light on its effectiveness in optimization problems. Finally,
we explore how stochasticity can be obtained from relational data and PolyStars.
Chapter III presents the second contribution of this PhD thesis, i.e. the gradient es-

timator for categorical features GCE. We begin by examining learning with categorical
data, categorical models and one-hot-encoding. We also address the problems associated
with stochastic gradient descent in the context of categorical features and the conver-
gence guarantees of this technique. Next, we introduce a solution for gradient estimation
in the form of GCE. We provide a formal definition of GCE, followed by a proof of its
unbiasedness, and discuss its application to relational linear regression. GCE is based on
the observation that not all categorical features appear in every row of a dataset. Con-
sequently, the corresponding parameters should not be updated during every iteration.
We also present experimental results and real-life applications of GCE, covering its use in
deep learning, categorical models on public datasets, and production settings. Lastly, we
explore the initialization of categorical and multiplicative models, starting with a two-
feature example and extending the discussion to generalizations using Singular Value
Decomposition.
Chapter IV presents the third contribution of this PhD thesis, i.e. a gradient estimator

based on code stochasticity. We also cover overfitting and memory consumption. We
will start by discussing memory consumption in the context of gradient-based methods,
including checkpointing techniques and Adsl’s considerations on their selection. We will
also discuss embedded artificial intelligence and its implications for memory manage-
ment. Next, we will address the issue of overfitting the data and introduce the dropout
technique as a solution to mitigate this issue. We examine the possibility to estimate
the gradient by sampling random backpropagation paths. Moving beyond uniform dis-
tribution on backpropagation paths, we introduce SPAD and discuss its implementation
generalization. We will also consider Adsl’s approach to incorporating SPAD. Finally,
in the last section, we present experiments that demonstrate the effectiveness of these
techniques. We explore optimization functions and deep learning models to showcase the
benefits of the methods discussed throughout the chapter.
In the conclusion of this doctoral research project, we provide a summary of the key re-

sults obtained. We reiterate our contributions that facilitated differentiation in relational
queries. Furthermore, we recapitulate the two innovative gradient estimators introduced
in this research: GCE and SPAD. Lastly, we discuss the potential avenues for future
research in this area, highlighting the exciting prospects that this thesis has unveiled.
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I. Differentiating relational queries

Introduction

In today’s world, data recording and management play a crucial role across various do-
mains, encompassing heterogeneous data types such as images, sounds, texts, and phys-
ical measurements. Among these diverse data types, relational data holds particular
significance in domains like healthcare and supply chain management. For example, in
these domains, patients may exhibit multiple health problems or take incompatible med-
ications, while customers may purchase items from multiple providers. A retail supply
chain database is given as an example in Figure I.1. To handle the inherent structure of
relational data, theoretical and practical frameworks have been developed, and database
systems are commonly used to query these structures and retrieve essential information.

Figure I.1.: Illustration of a retail supply chain database showing tables with shared at-
tributes facilitating relationships between them.

With the advent of machine learning, experts from diverse fields are keen to harness
this technology to tackle vital tasks like regression and classification, which hold great
significance in healthcare and supply chain management. In order to demonstrate the
potential of machine learning in relational programming languages, we present a straight-
forward example of a categorical model called relational linear regression. This model
applies to data from Table I.1 and extends traditional linear regression by sharing the
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slope among all observations with the same category, while the intercept remains shared
among all observations.

.
.

Category Slopes

A aA
B aB
C aC.
Cat table

Id Category x y

01 B 1.1 3.4
02 A 2.4 2.7
03 A 1.6 1.4
04 B 3.7 9.7
05 C 4.2 5.9
. . . . . . . . . . . .

.
Obs table

.

Table I.1.: Tables storing data. The Category attributes of the Obs and the Cat tables
relate to the same information.

.
.
.
.

ŷ(cat, x) = acat × x + b. (I.1)

0 1 2 3 4 5
X

0

4

8

12

16

Y

cat :A
cat :B
cat :C

Figure I.2.: Relational linear regression ap-
plied with the cat attribute con-
sisting of three different values:
A, B or C.

For a continuous variable x predicting another one y, a linear regression has 2 param-
eters, while a relational linear regression of a categorical variable has 1 + ns parameters,
with ns the cardinality of the possible attributes. Instead of only modeling the relation-
ship between two variables, the underlying structure of the data is used to provide a more
accurate representation of the input variables. Equation I.1 formalizes it while Figure
I.2 represents a toy dataset where the relational linear regression with slopes shared by
category fits the data very well. Such a simple model embraces the relational aspect
of the data and is interpretable, every parameter has an understandable meaning. This
inherently categorical model will serve as an example of what we aim to achieve through
the differentiation of queries. We also present a more sophisticated model, which is in
production at Lokad. Lokad faced the challenge of developing a retail forecasting model
for one of its clients. The goal is to forecast item-level sales y(item,week) for each week
using a sales history of over 70 billion observations. For each item in the dataset, there
are multiple categorical variables like the color, the store . . . Lokad’s experts crafted a
categorical model, similar to the following equation1 for each item i in the dataset:

1actual model details are kept confidential
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ŷ(i,week) = θstore(i) × θcolor(i) × θsize(i) ×Θ[group(i),WeekNumber(week)]. (I.2)

Here, Θ[group(i),WeekNumber(week)] is a parameter vector that captures the an-
nual seasonality for a specific group of items. It can be seen as a function mapping from
the combination of groups and week numbers to real numbers:

Θ ∶ Groups × [∣1,52∣]Ð→ R.

In this model, the values of the parameters θstore(item), θcolor(item), θsize(item) are deter-
mined by the category of the item. As a result, two red items will have the same value
for θcolor(item). Once the model parameters (Color.θ, Store.θ, etc.) are defined and
stored in the appropriate tables, it is straightforward to compute the sales estimation
ŷ(item,week) using any relational programming language. Tables can be easily queried,
ensuring that each item has a unique corresponding color and, in turn, a unique θcolor.
The relationships between these tables is presented in Figure I. However, relational lan-
guages lack a fully integrated automatic differentiation capability or operator, preventing
in-database optimization of such models through gradient descent. The objective of this
chapter is to establish a theoretical and a practical framework that enables the creation
and optimization of these models within relational programming languages.
More generally, there is currently no machine learning tool in database systems. This

lack is problematic for several reasons. First, the data has to be transferred on frameworks
that are not designed for relational data in order to perform machine learning on it. Then
the output has to be transferred back to the database system which is costly and error
prone [11]. Second, the machine learning model design responsibility goes to a machine
learning expert who has less understanding of the problem than the domain expert. If
a very complicated model like Transformers [25] is needed to perform the task, this re-
sponsibility transfer is mandatory but if a simple-but-well-designed model is enough, the
domain expert is the appropriate person to do it. Such simple-but-well-designed models
can be created by a domain expert even if he does not need to be involved in the opti-
mization process of it. And this can be obtained thanks to differentiable programming,
a paradigm in which a program can be differentiated. This derivative program gives di-
rect access to gradient-based methods, detailed in Chapter II. To enable feasible machine
learning in database systems, we have developed a dedicated programming language:
Adsl, which is specifically designed for this purpose. Differentiating relational queries is
now possible thanks to Adsl and the introduction of PolyStar and TOTAL JOIN, which
provide a solid framework for this task.
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Example of the relation between tables of the Lokad sales forecasting challenge
Example of the relation between tables of the Lokad sales forecasting challenge

Figure I.3.:
Example of the relation between tables of the Lokad sales forecasting chal-
lenge

This chapter is organized as follows. First, we present differentiation techniques and
implementations that allow gradient-based optimization. Second, we present the rela-
tional algebra theory to properly define how we aim to handle relational data. We also
motivate our objective to perform machine learning on relational programming languages
through differentiable programming and we observe the lack of appropriate tools to do
it. The rest of the chapter is contributional. We describe our main approach to unlock
differentiable programming on relational programming languages. Thus we introduce
Adsl, a sub-language especially crafted for automatic differentiation on relational data.
Naturally we also introduce its differentiation. Finally we present the practical applica-
tion of differentiable programming on relational data through Envision, a domain specific
language for supply chain. We illustrate it by designing different models that strongly
take into account the relational structure of the data.

The main contributions of this chapter are the following. We have unlocked differen-
tiable programming on relational programming languages. To do so we introduce the
notion of PolyStar to carefully describe the relationship between the tables used in a
query. We also introduce the TOTAL JOIN operator which lets us carefully construct
our query to differentiate. We also design Adsl, A Differentiable Sub Language for differ-
entiation on relational data, we implement it through Envision that is the first relational
programming language enabling differentiable programming.
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I.1. Differentiation

Machine learning has led to significant advances in recent decades, with the development
of various model structures capable of achieving high performance on tasks such as clas-
sification, numerical regression, policy learning, and data generation [26–29]. The success
of these models is measured by their ability to minimize a specific function known as a loss
function. Optimization techniques, such as gradient descent, are often used to minimize
the loss function by adjusting the model’s parameters. Gradient descent works by follow-
ing the opposite direction of the gradient in the hopes of decreasing the loss function step
by step. Deep neural networks, which are a popular class of machine learning models,
are optimized using gradient descent. The details of gradient descent are presented in
Chapter II. However, prior to discussing the minimization process using gradient descent,
it is essential to explain how this gradient can be obtained, which is done below.

I.1.1. Differentiation techniques

The derivative of a function represents the rate of change of that function at any given
point. It provides information about how the function behaves locally, including whether
it is increasing or decreasing, and the steepness of the curve at a particular point. The
derivative of a scalar function f from RÐ→ R is:

f ′(x) = ∂f
∂x
= lim

hÐ→0

f(x + h) − f(x)
h

. (I.3)

It generalizes to higher dimension on f ∶ Rp Ð→ Rq and is thus called gradient ∇fi ∈ Rp

for i ≤ q. The list of all the gradients of a function are represented into the matrix Jf
from Equation I.4. Jf is called the Jacobian matrix.

Jf(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

. T∇f1(x) .

. . . . .

. T∇fq(x) .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

. . . ∂f1
∂xp

. . . . . . . . .
∂fq
∂x1

. . .
∂fq
∂xp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (I.4)

.

where A↦ .TA is the transposition operator.
There are three possibilities in order to compute the gradient and thus use these opti-

misation techniques: Manual or Numerical or Automatic differentiation.

Manual differentiation

The most basic way is to manually code the gradients of each function. One can craft
the derivative by hand by following the chain rule and then code it. An example is given
in Figure I.4. This is very costly in terms of human time and it is error prone. Hand
coded differentiation has been a chosen approach and might be relevant in very specific
cases in order to fasten the gradient execution of a given function [30]. It is also useful if
for specific reasons, the users do not want to work with the true gradient of its defined
function but with a modified one.
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Figure I.4.: Manual Differentiation of cosx2 as taught in high school.

Numerical differentiation

Numerical differentiation is a method for approximating the derivative of a function at
a particular point. It involves calculating the slope of the function over a small interval
surrounding the point of interest, which is illustrated in Figure I.5.

x

y

aa + h

f(a)

f(a + h)

y = f(x)

Figure I.5.: Illustration of numerical differentiation of f . The arrow starting from
(a, f(a)) represents the tangent of the gradient of f at a, oriented in or-
der to decrease f .

The most common methods for numerical differentiation are the finite difference method
[31], which involves subtracting the function values at two points and dividing the re-
sult by the difference in their independent variable. These approximations become more
accurate as the interval becomes smaller. Formula I.5 and I.6 respectively present the
forward difference and the central difference methods.

[Jf(a)]i,j ≈
fi(a + hjej) − fi(a)

hj
(I.5)

[Jf(a)]i,j ≈
fi(a + hjej) − fi(a − hjej)

2hj
, (I.6)

with ej the unit vector in the jth direction and hj a step size. The forward differences
need p(q + 1) evaluations of the function f while the central differences require 2pq ones.
However, numerical differentiation can also be prone to errors and instability. First, the
accuracy of numerical differentiation depends on the step size and the method used. For
example, the finite difference method can introduce errors due to round off and truncation.
Second, it is sensitive to the choice of step size, and the results can be highly dependent
on the choice of the method and the behavior of the function being differentiated [32].
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Third, numerical differentiation can be computationally expensive, especially for high-
dimensional functions or for functions with multiple local extrema.
We now present another differentiation technique: automatic differentiation which is

the foundation of differentiable programming.

I.1.2. Automatic differentiation

Automatic differentiation [19, 33] is a computational technique used to exactly and effi-
ciently evaluate derivatives of functions expressed as computer programs. It computes
derivatives by breaking down complex functions into elementary operations and applying
the chain rule. The chain rule is a fundamental concept in calculus that governs the
differentiation of composite functions. It states that if we have two functions f and g
both from R to R, one denotes y = f ○g, where g(x) represents an inner function and f(u)
represents an outer function, then the derivative of y with respect to x can be computed
by multiplying the derivative of f(u) with respect to u by the derivative of g(x) with
respect to x. Mathematically, the chain rule is expressed as:

∂y

∂x
= ∂f
∂u

× ∂g
∂x
. (I.7)

This also applies to higher dimensions. When g ∶ Ra Ð→ Rb and f ∶ Rb Ð→ Rc, then
chain rule applies to the jacobians matrices Jf ∈ Rc,b, Jg ∈ Rb,a:

Jf○g(x) = Jf(g(x)) × Jg(x). (I.8)

The chain rule based on matrix multiplication applies irrespective of the complexity
of the model, enabling differentiation of both simple linear regression and deep neural
networks.
There are two main approaches to automatic differentiation: forward mode and reverse

mode. Forward mode calculates derivatives with respect to each input variable in a single
pass, while reverse mode computes the gradient of the output with respect to all input
variables simultaneously. Reverse mode, also known as backpropagation in the context
of neural networks, is widely used in machine learning and deep learning applications for
optimizing model parameters values.
One can also think about Symbolic differentiation, which is a method that involves

algebraic manipulation of a function’s mathematical expression in order to obtain an
exact representation of its derivative. However this can be considered as equivalent to
automatic differentiation [34] (even if there is still debate on the subject [1]).
Automatic differentiation is applied on an intermediate representation of a program

introduced as the Wengert lists.

Wengert lists

A Wengert list [19] is a mathematical construct used in the field of automatic differen-
tiation. It is a list of all the operations performed during a computation, along with
the variables that participate in those operations. In other words it is the trace of an
execution of a program.
It takes the form of a list of statements. The only present statements are assignment

statements to variables, called Wengert variables. It is as basic as it can be. All loops
are unrolled and every Wengert variable is scalar. There are no conditional statements,
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it just keeps the branch chosen at the execution. Here’s an example of a Wengert list for
a computation that includes a conditional statement. Let’s consider pseudo code from
Listing I.1

x <− . . .
i f x>0

then y <− x
e l s e y <− −x

z <− y + 1

Listing I.1: Pseudo code of a program containing a conditional.

The corresponding Wengert list for this computation depends on the value of the inputs,
notably to determine which conditional branch to choose. It would be as follows in Listing
I.1.

x = −3 ( Input va r i ab l e )
a = 0 ( Input va r i ab l e )
c = (x > a ) ( Intermed iate v a r i a b l e r ep r e s en t i ng the cond i t i on )
w1 = − x ( Intermed iate v a r i ab l e )
z = w1 + 1 (Output va r i ab l e )

Listing I.2: Wengert list of a program containing a conditional. A Wengert list being the
execution trace of the program, it requires a value for its input. We have
arbitrarily chosen x = −3.

In this example, x is the input variable, z is the final output variable, c, and w1 are
intermediate variables that store the results of intermediate computations. The Wengert
list includes an additional intermediate variable c to represent the condition x > 0, which
determines the rest of the list even though it seems unused in the following. The variable
z is computed using the conditional branch of the current execution. With another value
for input x, the trace of the execution would not be the same.
We present the two main approaches to perform automatic differentiation on a program.

Automatic differentiation on Wengert lists computes the gradient of the output with
respect to the input variables. Automatic differentiation can be implemented in two
modes: reverse or forward [35]. Both rely on the chain rule, depicted in Equation I.7,
but they do not run through it in the same direction.
In the subsequent sections, we present a formalization of the two distinct approaches

for applying the chain rule to differentiate a program, known as reverse and forward
modes. We begin by discussing the reverse mode.

Reverse mode

In the reverse mode of automatic differentiation we start from an initial cotangent u ∈ R
in the output space. For an intermediary Wengert variable ω, its adjoint is defined as:

ω = ∂f
∂ω

.u, (I.9)

ω can be seen as the sensitivity of the output f(x) ∈ R in the cotangent direction with
respect to ω. One can choose 1 as an initial cotangent which simplifies to ω = ∂f

∂ω . For the
input parameters, the choice of u = 1 gives us what we are looking for. An illustrating
example is given on Listing I.3.
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Let’s note ΩL = (ω1, . . . , ωL) the intermediary Wengert variable that directly use ω as
input of intermediary functions (f1 . . . fL):

ΩL = (ω1, . . . , ωL) = (f1(ω, . . . ), . . . , fL(ω, . . . ).

Let’s note H ∶ RL Ð→ R such that f(ω) =H(ΩL). Then the chain rule gives us:

ω = ∂f
∂ω

.u = ∂H(ΩL)
∂ω

.u = T (∇ΩL
H)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈R1,p

∂ΩL

∂ω
±
∈Rp,1

.u = (T (∇ΩL
H).u)∂ΩL

∂ω
=

L

∑
l=1
ωl
∂ωl

∂ω
=

L

∑
l=1
ωl
∂fl
∂ω

.

This is called reverse accumulation as the adjoint of ω accumulates all the incoming
adjoints of its children in the execution graph. One can notice that the expression of ω
uses the ∂fl

∂ω : the inputs of the fl are thus needed. Thus the Wengert list of the adjoint
program starts by the statements of the original one to compute these inputs. The storage
of the intermediate values is not tackled by the Wengert list representation but this is
detailed in Section IV.1.1.

x = −3 ( Input va r i ab l e )
a = 0 ( Input va r i ab l e )
c = (x > a ) ( Intermed iate v a r i a b l e r ep r e s en t i ng the cond i t i on )
w1 = − x ( Intermed iate v a r i ab l e )
z = w1 + 1
z = 1 ( I n i t i a l cotangent )
w1 = z ( Chain ru l e )
x = w1 ∗ (−1) (Output va r i ab l e )

Listing I.3: Reverse mode automatic differentiation of the Wengert list. In blue, the
additional statements to obtain the gradient.

Forward mode

In the forward mode of automatic differentiation, we start from an initial tangent v ∈ R
and the input x ∈ R both in the input space. For an intermediary Wengert variable ω
that is formally computed from the input x by fω (ω = fω(x)), the tangent of ω is defined
as:

ω̇ = ∂ω
∂x

.v.

Let’s decompose the target function as fω = HΩ ○ Hx with Hx ∶ R Ð→ RL and HΩ ∶
RL Ð→ R. Let’s note Hx(x) = ΩL = (ω1, . . . , ωL).
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ω̇ = ∂ω
∂x

.v = ∂fω
∂x

.v = ∂HΩ ○Hx

∂x
.v

= ∂HΩ

∂Hx

○Hx.
∂Hx

∂x
.v

=T ( ∂ω
∂ω1

, . . . ,
∂ω

∂ωL

).(ω̇1, . . . , ω̇L)

=
L

∑
l=1

∂ω

∂ωl

ω̇l.

This is called forward accumulation and is the equivalence of reverse accumulation but
for forward mode instead. An example on Wengert lists can be found in Listing I.4.

x = . . . ( Input va r i a b l e )

ẋ = ∂x
∂x = 1

a = 0 ( Input va r i ab l e )
ȧ = 0
c = (x > a )
ċ = 0
w1 = − x

ẇ1 = −ẋ
z = w1 + 1

ż = ẇ1 (Output va r i ab l e )

Listing I.4: Forward mode automatic differentiation of the Wengert list. In blue, the
additional statements to obtain the gradient. In contrast to reverse mode,
the additional statements are intertwined with the original ones.

Higher dimensions and mode choice

In a more general case, we consider f ∶ Rp Ð→ Rq. Then the same rules apply for both
reverse and forward mode but with matrices and vector multiplication rather than only
scalar chain rule.
In reverse mode the objective is to compute the vector Jacobian product (VJP) (TJf(x))u,

u ∈ Rq being the cotangent. The traditional orthogonal basis {ei}i≤q of Rq is often em-
ployed as initial cotangents:

∀i ≤ q, (TJf(x))ei =T [
∂f1
∂xi

. . .
∂fq
∂xi
] =T ∇fi(x)

This computation can be achieved in a single pass for each cotangent. However, if the goal
is to compute the entire Jacobian matrix instead of just the VJP, which would require q
passes, with q different initial cotangents.
In forward mode the objective is to compute the Jacobian vector product (JVP) Jf(x)v,

v ∈ Rp being the cotangent. The traditional orthogonal basis {ej}j≤p of Rp is often
employed:

∀j ≤ p, Jf(x)ej =T [
∂f1
∂xj

. . .
∂fq
∂xj
] =T ∇fj(x)
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This computation can be achieved in a single pass. However, if the goal is to compute
the entire Jacobian matrix instead of just the JVP, which would require p passes, with p
different initial tangents.
In the problem we are addressing, which is optimization in general, we primarily en-

counter the scenario where q = 1. This is a fundamental characteristic of minimization, as
it allows us to minimize scalar quantities but not vectors. Specifically, when q equals 1,
the vector space Rq is reduced to a one-dimensional space, which is the only case where
a total order can be established.
In such cases, the reverse mode requires only one pass, whereas the forward mode

requires p passes with p tangents. Consequently, when p is significantly larger than q,
the forward mode becomes infeasible in practice.

Rp Rq

(a) Reverse mode suited

Rp Rq

(b) Forward mode suited

Figure I.6.: Automatic differentiation mode choice depends on the data dimension.

In the following we will focus on the automatic differentiation as it does not require
any human intervention and is exact: it gives the program that implements exactly the
gradient of a function.

Remark 1. In the following we assume that all the considered functions are differentiable,
even though differentiation is still possible in a wider area [36].

Remark 2. In this chapter, our focus is solely on differentiation, and we do not delve
into the development of gradient descent, which is enabled by this technique. The theory
of gradient descent is presented in Chapter II, and it is extensively employed in Chapters
III and IV.

I.1.3. Existing automatic differentiation systems

To facilitate the implementation of gradient-based algorithms, automatic differentiation
is crucial. Many subsets of programming languages can be automatically differentiated,
as it is a widely studied subject [1, 37–39]. The most well-known libraries that rely on
automatic differentiation include PyTorch [40] and TensorFlow [41].
There are two main approaches for implementing automatic differentiation. The first

approach is to take an existing programming language and try to make it differentiable
[37–40, 67]. In this method, the language is modified for optimization through gradient
descent. However, by doing so one has to implement the automatic differentiation system
for each programming language separately. The second approach is to create a specialized
programming language designed specifically for automatic differentiation, making it fully
differentiable [56, 65, 66, 68]. Then, the compilation between these specialized languages
and target languages needs to be implemented. More precisely, one can separate five
different techniques to implement automatic differentiation on programming languages.
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Language Tool Type Mode Reference

AMPL AMPL INT Forward, Reverse [42]
C, C++ ADIC ST Forward, Reverse [43]

ADOL-C OO Forward, Reverse [44]
C++ Ceres Solver LIB Forward

CppAD OO Forward, Reverse [45]
FADBAD++ OO Forward, Reverse [46]
Mxyzptlk OO Forward [47]

C# AutoDiff LIB Reverse [48]
F#, C# DiffSharp OO Forward, Reverse [49]
Fortran ADIFOR ST Forward, Reverse [50]

NAGWare COM Forward, Reverse [51]
TAMC ST Reverse [52]

Fortran, C COSY INT Forward [53]
Tapenade ST Forward, Reverse [37]

Haskell ad OO Forward, Reverse
Java ADiJaC ST Forward, Reverse [54]

Deriva LIB Reverse
Julia JuliaDiff OO Forward, Reverse [55]

ForwardDiff INT Forward [55]
Zygote ST Reverse [38]

LLVM Enzyme LIB Reverse [56]
Lua torch-autograd OO Reverse
MATLAB ADiMat ST Forward, Reverse [57]

INTLab OO Forward [58]
TOMLAB/MAD OO Forward [59]

Python ad OO Reverse
autograd OO Forward, Reverse [60]
Chainer OO Reverse [61]
Jax OO Forward, Reverse [62]
PyTorch OO Reverse [40]
Tangent ST Forward, Reverse [63]

Scheme R6RS-AD OO Forward, Reverse
Scmutils OO Forward [64]
Stalingrad COM Forward, Reverse [65]

SQL GradDesc COM Forward [11]
Taichi DiffTaichi ST Reverse [66]

Table I.2.: Survey of automatic differentiation implementations. This is based on [1] and
updated. One can notice that there is no reverse-mode available on relational
programming languages.

Compiler-based

Compiler-based automatic differentiation (COMP) is integrated into the compiler itself.
The compiler analyzes the code and generates the derivative computations as part of the
compilation process. This allows for efficient differentiation without the need for runtime
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overhead.

Interpreter-based

In interpreter-based automatic differentiation (INT), the differentiation is performed dur-
ing the interpretation phase of the code execution. The interpreter analyzes the code on
the fly and computes the derivatives as needed. This approach provides flexibility and dy-
namic control flow, as the differentiation can adapt to the program’s execution. However,
it can introduce runtime overhead.

Library-based

Library-based automatic differentiation (LIB) involves the use of dedicated libraries or
frameworks that provide functions and APIs for automatic differentiation. These libraries
typically offer a range of differentiation operations and can be used alongside existing
programming languages.

Operator Overloading-based

In operator overloading-based automatic differentiation (OO), the mathematical opera-
tors of a programming language are overloaded to automatically compute the derivatives
of functions. This allows for the computation of derivatives without explicitly program-
ming the differentiation rules.

Source Transformation-based

Source transformation-based automatic differentiation (ST) involves modifying the source
code of a program to include differentiation operations explicitly. The program code
is transformed to include the computation of derivatives, either manually or through
automated tools. This approach allows for fine-grained control over the differentiation
process but requires modifications to the original code.

Each approach has its own advantages and considerations, and the choice depends
on factors such as the programming language, the desired level of control, performance
requirements, and the specific use case of automatic differentiation. A comprehensive
survey of automatic differentiation systems is presented in Table I.2, which is an updated
version of [1]. This table aims to provide an overview of various implementations and is
not intended to be exhaustive. It highlights the diverse range of automatic differentiation
tools available, each specifically developed to suit particular frameworks or facilitate
integration with specific operations relevant to the field or target hardware.
Following the presentation of differentiation and its generic automatic implementa-

tions, our focus now shifts towards relational queries, which constitute the target of our
differentiation efforts.
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I.2. Relational query

I.2.1. Industrial context

Lokad specializes in handling client supply chain data, which is typically structured as
tables with relational links between them. To ensure data cleanliness and organization,
the most commonly used tools are relational database systems. However, when it comes
to optimization tasks, Lokad has encountered challenges due to the temptation to rely
on external machine learning algorithms written in Python for example. This reliance on
multiple frameworks has resulted in friction and inefficiencies for Lokad. The forecasting
challenge presented in the introduction of this section illustrates the challenges faced by
Lokad. Lokad could extract the necessary data from the relational database into external
Python frameworks such as scikit-learn [69] to develop and optimize machine learning
models. This process not only introduces additional complexity but also requires data
movement, transformation, and synchronization between the database and the external
frameworks.
The limitations of this approach become evident when working with large-scale datasets.

The frequent necessity to transfer and transform data between the relational database
and external frameworks introduces substantial overhead and becomes a performance
bottleneck [11]. When delivering results to clients on a daily basis, it is imperative that
the entire process can be completed within a day. Moreover, maintaining consistency and
synchronization between the database and the external frameworks can be challenging,
particularly when dealing with real-time or near real-time data updates. From an indus-
trial standpoint, even a few hours of unavailability can have significant and detrimental
consequences.
To address these challenges and improve the efficiency of optimization tasks, Lokad

recognizes the value of developing machine learning models directly within the relational
database system itself. By enabling differentiable programming in the database, Lokad
aims to leverage the inherent relational structure of the data, perform computations at
the source, and minimize data movement and synchronization overhead. Data transfer is
often a significant time-consuming part, as measured in [11] for machine learning tasks.
To support this statement, we argue that in many production models at Lokad that
deal with categorical data, most of the resources are used to load and prepare the data,
while the optimization part is minor in terms of computing. To emphasize this point, we
have evaluated the CPU time of several production runs at Lokad using the developed
optimization framework. Our findings indicate that, on average, 42% of the CPU time
is devoted to gradient descent optimization, while the remaining time is allocated to
data processing tasks, such as loading, cleaning, rendering, and exporting. The median
value for the proportion of CPU time dedicated to gradient descent optimization drops to
34%. In essence, while Lokad minimizes data transfer by consolidating all computations,
including data processing and optimization, within a single framework, data handling
remains the primary source of resource consumption. One possible explanation for this
phenomenon is that iterative optimization methods applied to the same dataset tend
to be more effective than performing a pipeline of disparate operations on continuously
changing data.
The ratio mentioned above is not applicable to tensor-based systems that run deep

neural networks, as the high resource consumption is often beyond the capabilities of
small companies. However, machine learning models, especially deep learning models,
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excel in modeling highly complex functions that primarily learn relevant features in large
parameter spaces (millions or tens of millions of parameters). They learn a final decision
or regression function that is generally of much lower complexity. It is expected that the
optimization of such models requires a substantial amount of data and computational
resources. On the other hand, white box models developed in supply chain must closely
align with the semantics of the input data. Furthermore, the optimized functions do not
exceed the complexity of the underlying database schema. There is no need to learn
hidden representations (features) from the input data. Therefore, it is not surprising to
observe the time ratio between computation and transfer when addressing optimization
problems in supply chain.
In following sections, we will delve into the properties of relational data compared to

tensor data and introduce relational algebra.

I.2.2. Specificity of relational data

To highlight the difference between strongly structured relational data and tensor like
image, we present two different data and their modification with 40% of noise.
On one hand, Figure I.7 represents two instances of the same tabular data storing

medical treatment information on different patients: I.7a is the clean data while I.7b is
the 40% noise version. In the clean data, we can hint that:

• treatment A cures patients,

• treatment B does not cure patients,

• treatment C cures patients with sequels.

treatment patients recovery

A

B

C

yes

no

sequels

0

1

2

3

4

5

(a) No noise.

treatment patients recovery
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1

2
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4
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(b) 40% noise.

Figure I.7.: Relational data and noise. Figure I.7a represents clean toy relational data
and Figure I.7b depicts its polluted version. Such kinds of relational data do
not support this level of noise.

On the other hand, Figure I.8 represents two instances of the image: I.8b is the clean
data while I.8b is the 40% noise version. One can acknowledge that the image data is
still readable with noise while the tabular data does not bring the same information at
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all with noise. On the noise version of the tabular data, the previous hints do not apply
anymore. An error on a specific pixel has almost no importance while a treatment error
can have a massive impact.

(a) No noise. (b) 40% noise.

Figure I.8.: Image data and noise. Figure I.8a represents a clean image of a logo and
Figure I.8b depicts its polluted version. Such kinds of image data do not
support this level of noise, as the main information is still present.

This aims to show that relational data deserve a specific treatment, especially to per-
form machine learning on it. One of the primary objectives of this initial section is to
establish a sound theoretical framework for managing relational data. Specifically, we
seek to differentiate a query that arises from combining data from multiple tables, which
motivates the need to introduce the principles of relational algebra theory.

I.2.3. Relational algebra

Relational algebra [70] is a theoretical framework for handling and querying structured
data in a relational database system. It provides a set of operators that allow for effi-
cient data manipulation, combining tables, filtering data, performing calculations, and
aggregating information. By understanding the principles of relational algebra, one can
effectively work with relational data and optimize database operations. The majority of
database system implementations follow this framework. In this work, we focus on the
portion of relational algebra that is required for differentiation. To maintain consistency
with the terminology used in other sections, we use the term table instead of relation.

Definition 1 (table). A table T = ({a1 . . . am}, ti≤n) is a list of m attributes {a1 . . . am}
and a finite set of m-tuples ti≤n. Each attribute takes its value within a specific discrete
or continuous set.

Definition 2 (primary key). The primary key of a table T is a subset {ai}i∈I of the
table’s attribute such that the tuples values restricted to this subset are unique throughout
the table:

∀t, t′ ∈ T, t{ai}i∈I = t′{ai}i∈I ⇔ t = t′.

Every table has a primary key.

Definition 3 (foreign key). A foreign key is a set of attributes {bi}i∈I from table T1
related to a primary key {cj}j∈J from T2 such that

∀t ∈ T1,∃t′ ∈ T2; t{bi}i∈I = t′{cj}j∈J .

By extension a foreign key is a column or a set of columns in one table that refers to
the primary key of another table. The purpose of a foreign key is to enforce referential
integrity, which requires that the values in the foreign key column(s) match the values in
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the primary key of the related table. By establishing a relationship between two tables,
a foreign key ensures that data is consistent and accurate.
Relational algebra provides a set of operators that can be applied to tables in a

database. A query is a composition of these operators applied to a list of tables. The
output of the query is also a table.

PROJECTION

A projection is an operation that consists of selecting a subset A of the attributes of the
table T and thus reduces the size of the tuples. It is denoted as follows:

ΠA⊂{a1...am}(T ) = (A, ti≤n).

The projections can be extended into generalized projections that apply a tuple-to-
tuple function on every element of the table. Given a function f ∶ t Ð→ t′, The following
operator maps f to every tuple of T:

Πf(T ) = (A,f(ti)i≤n).

The list of raw functions supported in the map operation is tiny but operator compo-
sitions allow us to build all the usual functions. The list of map operation can be split
into two sub lists: the logical operators like ∧, ¬, ∨ . . . and the mathematical ones like xn,
cosx, sinx, ex, lnx . . . In the following we will split the queries into their relational and
mathematical aspects. The mathematical aspect of the queries relies on the mathematical
map operations.

SELECTION

A selection σϕ is an operation that reduces the table T by reducing the number of tuples.
The selection keeps the tuples satisfying a predicate ϕ that is a boolean function on the
tuples space:

σϕ(T ) = ({a1 . . . am}, ti≤n and ϕ(ti)).

JOINS

There exists multiple ways to group tables into one, depending on what we want to
obtain.
The Cartesian Product is a very simple way to join two different tables
R = ({r1, . . . , rn}, ρi≤nR

) and S = ({s1, . . . , sm}, ζj≤nS
). This is defined in Formula I.10:

R × S = ({r1, . . . , rn, s1, . . . , sm},{ρi ∪ ζj ∣ i ≤ nR; j ≤ nS}}. (I.10)

The Natural Join & between two tables R and S is the selection of the Cartesian
Product to the tuples r ∈ R and s ∈ S that have a common value on their shared attributes.
The Inner Join &θ between two tables R and S behaves like the Natural Join but the

selection is applied on a given predicate θ rather than the simple matching of the values
on the shared attributes:

R &θ S = ({r1, . . . , rn, s1, . . . , sm},{ρi ∪ ζj ∣ i ≤ nR; j ≤ nS and θ(ρi ∪ ζj)}}. (I.11)
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There are many other join operators that are not described here as not used in the
following.

AGGREGATION

The aggregation operation is the application of a given function agg on the tuples of a
given attribute a of a table T noted as follows:

Gagg(a)(T ) = agg
i≤n

ti[a]. (I.12)

The function agg has to be defined on sets of elements of the type of the given attribute.
The most common functions are Sum, Count, Maximum, Any . . .

NULL

NULL values represent missing or unknown data. They are used to indicate the absence
of a value or the inability to provide a valid value for a particular attribute or field in
a table. There are situations where certain data cannot be obtained or are not defined
for a particular record. For example, if a customer did not provide his phone number,
the corresponding field can be marked as NULL to indicate the unavailability of that
information. NULL values are crucial for maintaining data integrity in a database. They
allow for the distinction between an empty value and a NULL value, ensuring accurate
representation of missing or unknown data. They allow for conditional statements that
involve checking for the presence or absence of data. For example, filtering records where
a particular attribute is NULL can help identify missing data for further analysis or data
cleaning. In certain cases, NULL values propagate through mathematical operations.
When performing calculations or aggregations involving NULL values, the result is often
NULL. This behavior helps maintain consistency in data computations. Overall, NULL
values provide a standardized and explicit way to handle missing or impossible data in a
database, allowing for more accurate data representation, querying, and analysis.
There exist multiple statistical techniques in order to fill NULL values in a database

system. In the following, we do not consider NULL values. We suppose that all the data
cleaning and preprocessing is done before the query differentiation. It is to be noticed
that the TOTAL JOIN operator later introduced in Section I.3.3 cannot create NULL
values by design. Without NULL values as input and with operators that do not create
ones, this assumption is realistic.

Remark 3. There exists a distinction between the theoretical relational algebra that has
been presented and the various implementations of relational programming languages.
The most renowned example is SQL (Structured Query Language), which will serve as a
reference for implementation examples throughout the following sections.

I.2.4. Query

A query R is the result of applying a combination of operators on input tables. As de-
scribed in Section I.2.3, these operators take tables as input and output tables, which
can be combined to create a single table known as the query result. Join operators are
essential for working with relational data and are typically implemented in relational
programming languages to optimize performance, as they can be resource-intensive. For-
mally a query is the composition of relational operators on existing tables.
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In the context of relational linear regression using data from Table I.1, we consider the
attributes of Table Obs as {id; c;x; y} and the attributes of Table Cat as {c′; s}. The
relational linear regression can be represented as follows:

Πfb(Obs &c=c′ Cat), (I.13)

where fb(id, c, x, y, c′, s) = s × x + b.

Having presented the theoretical framework of relational algebra, we advocate that per-
forming machine learning within this framework would be a crucial achievement towards
the introduction of optimization and machine learning techniques in many industrial ap-
plication domains that bear on database systems. The following paragraph provides an
overview of the recent attempts toward this goal published in the literature, and allows
us to identify our contribution.

I.2.5. Existing automatic differentiation on relational queries

Data are heterogeneous, but most machine learning systems rely on tensor types such as
Pytorch or Tensorflow. This is perfectly suited for many applications dealing with images
for example, but this is not the best framework for relational data, while relational algebra
(see Section I.2.3) is. For example, Pandas library [71] proposes an API to be requested
with SQL queries as it is the appropriate way to handle relational data. Of course
tensor data libraries propose to handle relational data but are not primarily designed
for it. Programming languages dedicated to automatic differentiation [56, 65, 66, 68] are
not designed for relational programming languages interoperability either. DiffTaichi [66]
is designed for physical simulators, [68] and Stalingrad [65] serve theoretical analysis of
automatic differentiation. Enzyme [56] performs automatic differentiation directly on the
LLVM compiler which is mostly used by deep learning libraries.
When it comes to relational programming languages, there are only a few attempts

since machine learning tools are largely absent from database systems. Some works,
such as [11], have begun to address the subject by differentiating a portion of the SQL
language. For example [11] proposes to support traditional linear regression, as presented
in Listing I.5.

WITH means AS
(SELECT avg (x ) AS mean x , avg (y ) AS mean y FROM datapo int s ) ,
sums AS (SELECT

sum( ( x − mean x) ∗ ( y − mean y ) ) AS numerator ,
sum( power (x − mean x , 2 ) ) as denominator
FROM datapoints , means ) ,

a AS (SELECT a , numerator / denominator AS value FROM sums ) ,
b AS (SELECT

b ,
mean y − a . va lue ∗ mean x AS value FROM means ,
a )

SELECT ∗ FROM b union SELECT ∗ FROM a ;

Listing I.5: Simple linear regression in SQL presented in [11]. Unlike relational linear
regression, which involves multiple slopes and intercepts, the approach de-
scribed in this listing focuses on a single slope and intercept.
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This holds great promise and proves to be highly valuable, particularly when an expert
needs to implement a straightforward model like linear regression within a larger set of
relational operations.
While this is promising, the authors still describe it as an architectural blueprint.

A follow up work [72] introduced a declarative machine learning language that can be
translated both into SQL and Python as target platforms. [73, 74] have also worked in
this direction. Their aim is to replicate the gradient-based methods used in tensor-based
systems as [75] claims that their machine learning pipeline in SQL showed comparable
performance to traditional machine learning frameworks. They even reproduced small
neural networks in SQL as a proof of concept. Their primary objective is to reduce data
transfer costs, which is crucial. From our perspective, another interesting challenge lies
in enabling machine learning to fully leverage the relationship between input and model
parameters. For instance, the implementation of relational linear regression or the retail
forecasting model described by Equation I.2 cannot be seamlessly achieved using these
frameworks. It could be done by facilitating the construction of relational models that
take into account the specificity of this input data. Our perspective is summarized in
Table I.3, which outlines our viewpoint on the appropriate tool to use in function of the
model one wants to use on relational data.

Model Suited place Has been done by

Linear regression Relational programming languages [11,72,75]
Deep learning Deep learning tensor libraries [40,41] . . .
Relational linear regression Relational programming languages not yet

Table I.3.: This table outlines the recommended tools according to us for performing
machine learning on relational data.

Database systems serve as the appropriate framework for structured data. Though
database systems are widely used to manage relational data, they lack integrated machine
learning tools. This deficiency can be attributed to the lack of widespread automatic
differentiation systems in database systems. Indeed, as presented in Section I.1.2, modern
machine learning relies on gradient methods; without an automatic differentiation system,
machine learning is thus not feasible. This lack of widespread tools for handling relational
data may explain why tabular datasets are referred to as ”the last unconquered castle”
for deep learning by [6], whereas database systems are proven sufficient to express an
end to end machine learning framework with data preprocessing, model training and its
validation [75].
Furthermore, the database systems community and the machine learning community

remain distinctly separate [76]. The absence of widespread automatic differentiation
hinders the convergence of these two communities, which is detrimental, especially in
domains such as supply chain and healthcare where field experts often work with database
systems. Their expertise is invaluable for designing predictive models for related tasks.
Allowing these experts to construct their models using differentiable programming tools
would result in white box models that would be fully explainable. The following work
aims to bridge the gap between these two communities by proposing the first framework
for building categorical models (see Section III.1.2) directly within database systems. The
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programming language dedicated to automatic differentiation is open sourced2 and Lokad
complete pipeline is available3.

We have highlighted the need of differentiating relational queries to perform important
tasks on relational data. Current solutions show promise; however, they do not fully ex-
ploit the potential of data relationships. These solutions aim to replicate models, such as
linear regression or classical deep networks [73,75], developed on tensor-based frameworks
within database systems. Therefore, our aim is to build a framework where differentiable
programming is a first-class citizen in relational programming languages. Doing so we
will be able to replicate the standard models but also create new ones that leverage the
relational aspect of the data, like relational linear regression presented in I.5.3. We will
first present our approach to constructing this framework, which involves separating the
query into its relational and mathematical components.

I.3. Differentiable programming on relational queries

The rest of this chapter is based on [77]. This work has been the subject of my talks at
VLDB 2021 and the MODE Workshop on Differentiable Programming for Experiment
Design 2022.

In the following section, we develop our brand new theoretical set up for query differen-
tiation. This will allow us to construct complex decision or regression functions within
a database system and optimize them using gradient descent. The main idea is to split
the operations of a given query R into two parts. First there are the relational opera-
tions on the tables Ts and their relations that just propagate gradients. Second, there
are the mathematical operations f that create complex gradients following automatic
differentiation rules. This separation is presented in Figure I.9.

R Ts, f

Figure I.9.: Query splitting into its relational and its mathematical parts.

Differentiable programming is represented in Figure 1. Applying this representation
to differentiation of relational queries lead to Figure I.10 where the query is split into its
mathematical function f and the tables on which the query occurs.
Thanks to our approach, we obtain the gradient of a query as another query, which is

a significant contribution of our work and offers multiple benefits.
Firstly, all the available optimizations for queries are applicable: the resulting gradient

query benefits from the same support as the original one. This remark pertains to the
optimizations available in the database system during both compilation and execution
time of the relational query.
Secondly, differentiable programming is highly programmatic. When external tools call

relational queries, returning the gradient as a query enables composability. In Section

2Adsl library can be found at https://github.com/Lokad/Adsl
3https://try.testing.lokad.com/
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R Ts, f

Ts, f ′R′

Figure I.10.: Path to differentiation. The direct differentiation of R to R′
does not exist yet so we introduce a novel way to do it.

I.4.4, we present the reverse and forward modes of automatic differentiation, making
this work compatible with any differentiable programming framework, regardless of the
automatic differentiation mode implemented.

I.3.1. Notations

We consider the supervised learning set up with a given set of training labeled data
Z = {zi = (Xi; yi); i = 1 . . . n}, with the feature vectors Xi ∈ Rp and the scalar targets
yi ∈ R.
We aim to find the best parameter θ⋆ ∈ Rp to minimize the loss Fθ⋆ on the whole

dataset:

f ∶ Rp ×Z Ð→ R (I.14)

θ, (X,y)Ð→ fθ(X,y)

θ⋆ = argmin
θ∈Rp

Fθ

= argmin
θ∈Rp

∑
X,y∈Z

fθ(X,y)

= argmin
θ∈Rp

∑
i=1...n

fθ(Xi, yi).

Our strategy to get closer and closer to θ⋆ is to perform gradient descent as detailed
in Chapter II. To do so we need an access to the gradient of f , we describe how to do it
when the whole function is in fact a query. Note that in this case, the data Xi are entries
of the tables Ts. One of the main challenges is to access these entries without loading
the full tables for each computation of the gradient of f . All the following are oriented
in this direction.
We apply these notations to the relational linear example. Let’s assume that the

Observation table (properly defined as the observation table in Section I.3.4) is of size n,
the Category table of size c and that we use the norm l2. It reduces to finding the best
vector A⋆ ∈ Rc in the Categories table and the best scalar b⋆ such as:

A⋆, b⋆ = argmin
A∈Rc,b∈R

∑
i=1...n

(yi −A[cati]xi + b)2.
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I.3.2. A loss query is relational and mathematical

Relational

We have presented relational operators in Section I.2.3. In order to fit the minimization
presented above, the query, which is a composition of relational operators, has to end by
a SUM-aggregation of a projection of the loss attribute. It takes the form of Formula
I.15.

GSUM(loss)(Πloss(Observations)). (I.15)

For a given query R, the construction of the observation table and its loss attribute
involves multiple tables Ts that form the relational aspect of the query.
Regarding the relational linear regression, the relational aspect of the query corresponds

to the relationship between the Observation and the Categories table, properly defined
in Section I.3.3.

Math

When retrieving information from a database through a query, the use of mathematical
concepts is usually limited. However, when designing a predictive model as a query,
mathematical operations become crucial. Although the set of available mathematical
operators is limited, it enables the construction of highly useful ones. For instance, the
raw operator exp can be used to build the softmax operator σ, as shown in Equation
I.16.

σ(Z)i =
ezi

∑j e
zj
. (I.16)

One can find the list of the operations we have implemented (and their derivative) in our
query differentiation system in Table I.5. For a given query R, the composition f of these
mathematical operators forms the mathematical aspect of the query.
Regarding the relational linear regression, the mathematical aspect of the query cor-

responds to the standard linear regression from Equation I.1, ignoring the slopes being
distinct by categories.
In order to effectively separate these two aspects of a query, we will introduce the

PolyStars in the subsequent section. The construction of the PolyStars will be facilitated
by a novel join operator known as the TOTAL JOIN.

I.3.3. TOTAL JOIN operator

In order to enable the construction of relational models such as relational linear regression,
it is essential to have guarantees regarding the relationships between tables. In the context
of relational linear regression, where we seek a slope parameter for each category, we aim
to store the slope values within the Category table. To ensure this, it is necessary to
establish that for each tuple in the observations table, there exists one and only one
corresponding tuple in the Category table. If there were more than a corresponding
tuple in the Category table there would be ambiguity in the parameter value. If there
were no corresponding tuple in the Category table, it would lack the parameter value.
The introduction of the concept of TOTAL JOIN in the following provides the necessary
guarantee to fulfill this requirement.
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Many database management tools are a sort of implementation of the model presented
in I.2.3. In SQL, multiple joins types are possible: (INNER) JOIN, LEFT (OUTER)
JOIN, RIGHT (OUTER) JOIN, FULL (OUTER) JOIN . . .We introduce a novel join
operator that helps us to simplify the table tree: TOTAL JOIN. T1 TOTAL JOIN T2
ON ⟨θ⟩ is the same semantic as T1 INNER JOIN T2 ON ⟨θ⟩ (presented in Section I.2.3)
with the additional constraint that for each line of T1, there is exactly one line of T2 that
corresponds. To make a successful T1 TOTAL JOIN T2 ON ⟨θ⟩ it is sufficient that θ
columns are a primary key (from Definition 2) in T2 and a foreign key in T1, but it is not
necessary. This is true because a primary key is a non ambiguous way to select a unique
tuple in the related table.

..

SELECT ∗
FROM A
INNER JOIN B

ON A.K = B.K

Listing I.6: INNER JOIN.

A B

Figure I.11.: INNER JOIN representa-
tion. Without any restric-
tion on the tables, there
might be values for the K
attribute in the B table
that are not present in the
A table.

SELECT ∗
FROM A
TOTAL JOIN B

ON A.K = B.K

Listing I.7: TOTAL JOIN.

A BB

Figure I.12.: TOTAL JOIN representa-
tion. With restrictions on
the tables, all the lines of
B are concerned by this
join operation.

.

.

.
This novel join operator does not create different tables than the INNER JOIN operator
but it gives guarantees on the relationships between the tables and thus allows us to easily
construct PolyStars, defined Section I.3.4. The difference is highlighted in Figures I.11
and I.12. This operator also allows us to avoid dealing with NULL values as presented
in Section I.2.3 with strict conditions on the table relationships.

I.3.4. PolyStar

In this section, we introduce the definition of the PolyStar, which is a way to see the graph
of the different tables used in the query we aim to differentiate. This is a key concept
in order to isolate the relational part of a query from its mathematical one, which is the
core of our differentiation approach.
Let’s start by the introduction of the Polytree [78], on which our PolyStar relies on.

30



Definition 4 (Polytree). A Polytree is a directed acyclic graph whose underlying undi-
rected graph is a tree.

An example is given Figure I.13. For instance, genealogical trees can be considered
as Polytrees. The direction of the edges is determined by the parental relationships,
and the structure is evidently acyclic since no individual can be both an ancestor and a
descendant of the same person.

Figure I.13.: A generic Polytree.

Let Ts be the set of tables used in a query. Let’s introduce the relationship ”TA Ð→ TB”
when the primary key of TA is a foreign key in TB. It is said that TA broadcasts into TB.
A simple way to create such TA and TB in SQL is presented in Listing I.8.

CREATE tab l e TA AS
SELECT fore ignKey AS primaryKey
FROM TB
GROUP BY fore ignKey

Listing I.8: Creating implicit broadcast.

In the following, any ”Ð→” between tables means ”broadcasts into”.

Definition 5 (Cross Edge). A cross-edge is a pair of edges in a graph (AÐ→ B,C Ð→ B)
which indicates that B comes from a cross operation between A and C.

Here is a simple way to create such a cross edge in SQL, which is the implementation
of the Cartesian Join presented in Formula I.10:

CREATE tab l e B AS
SELECT ∗ FROM A
CROSS JOIN C

Listing I.9: SQL cross edge creation.

Definition 6 (PolyStar). Let’s define a PolyStar P⋆ = (P, ot) as a Polytree P with
cross-edges and ot a node of P.

A PolyStar is a Polytree with a special focus on a specific node of the graph called the
observation node. This special focus gives a natural coloration of the graph.
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ot

Figure I.14.: A PolyStar with its corresponding coloration thanks to the special focus on
the ot node, which extends the PolyTree from Figure I.13.

From the special focus on a specific node ot, that we now call the observation node, we
can classify the other nodes. Let n be a node of (P, ot) = P⋆, we call:

• an upstream node, a node n of P such that nÐ→ ot.

• an upstream-cross node, a cross node n of P such that one of its parents is an
upstream node.

• an observation-cross node, a cross node of P such that one of its parents is ot.

• a downstream node, a node d of P such that it is not an observation-cross node and
that otÐ→ d.

• a full node, all the remaining nodes of P .

These definitions uniquely define every node in the PolyStar, a generic example is
given in Figure I.14. Two concrete examples on properly defined models are presented
in Sections I.5.3 and I.5.4. As explained above, the PolyStar is introduced to fit on the
tables used in the query. The names (upstream, downstream . . . ) are introduced with
the PolyStar, and are inspired by the flux’ paths in the table tree induced by the query.
Let’s remember that the output of the query we aim to differentiate is a numerical vector
(related to an attribute to fit with notations from Section I.2.3) in the observation table
and we want to minimize its sum over the observation table, as presented in Formula
I.15. The observation table corresponds to the training labeled data Z from Equation
I.14. The loss function is, before aggregation, a vector in the observation table. Thus
dimension of the inputs from tables can be defined from their relationships with the
observation table. From the point of view of a line in the observation table, other tables
do not need to be fully loaded and reduce to the following:

• An input from the observation table reduces to a scalar.

• An input from an upstream table reduces to a scalar.

• An input from an upstream-cross table reduces to a vector of the size of the right
table used in the cross operation.

• An input from an observation-cross table reduces to a vector of the size of the right
table used in the cross operation.
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• An input from a downstream table reduces a vector of certain size.

• An input from a full table reduces a vector of the size of the full table itself.

In the relational linear regression example, there are two tables: Observations and
Category. The Category table serves as an upstream table for the Observations table. In
this context, for each line in the Observations table, the slope vector (aA, aB, aC) from the
Category table is reduced to a scalar parameter. Specifically, if the category of the row
is A, the scalar parameter is aA. Similarly, for categories B and C, the scalar parameters
are aB and aC respectively. Furthermore, with this new perspective, Figure I can be
observed, depicting how values from upstream parameters are loaded as scalars for each
line of the observation table.
The PolyStar places a special emphasis on the observation node, which facilitates

clear broadcasts between tables and allows for a lightweight semantic understanding of
the relational aspect of the query. By freezing the relationships between tables, these
clear broadcasts help prevent errors when joining tables. In tensor-based systems, the
granularity of the loss at the observation table is implicit, as there is only one table.
However, in our approach, we want to take full advantage of the relational aspect of the
data and not flatten it into a single table. Therefore, the PolyStar is crucial in enabling
us to properly define the quantity we aim to minimize.
With the relational aspect of the query now managed by PolyStar, and the query

prepared for differentiation, we introduce the specialized programming language we have
developed specifically for conducting automatic differentiation operations. Subsequently,
it will become feasible to perform differentiation of relational models, such as relational
linear regression expressed as queries, directly within the database system itself.

I.4. A dedicated programming language: Adsl

I.4.1. Presentation of the language

We introduce Adsl4, which is A Differentiable Sub Language that is intended to lower
relational programming languages, i.e. to translate them into another one that is closer
to the machine.
Although the implementation of the compilation between Adsl and each programming

language is necessary for this method, the automatic differentiation system only needs to
be implemented once. It means that we have opted for the library approach from Section
I.1.3, as illustrated in Figure I.15.
Adsl has been created to enable the expression of a query’s gradient as another query.

Adsl is a language where automatic differentiation is a first-class citizen. It is closed
by differentiation: the adjoint, i.e. the derived program, of an Adsl program is also a
differentiable Adsl program. Adsl is a simple language that supports loops and conditional
but one of its key characteristics is its ability to support aggregators and broadcasts
between tables. This feature enables the expression of join operations and the creation of
new tables within the language. The inclusion of broadcast and aggregator capabilities
directly in the language allows us to generate the required operators in Adsl for effectively
expressing the gradient of a query.

4Adsl library can be found at https://github.com/Lokad/Adsl
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Figure I.15.: Adsl automatic differentiation schema.

As we crafted it from scratch, we designed it with specific properties, presented in
Sections I.4.2 and I.4.3 that make Adsl differentiation as easy as possible. It also created
a novel gradient estimator described in Chapter IV.
All of this relies on a specific treatment of Adsl’s variables scope. The scope of a

variable is the region within a program’s source code where a variable is accessible and
visible. The scope of a variable is determined by the rules of the programming language
and affects how variables can be used and manipulated within the program. Formally,
the scope of a variable can be defined as follows:

• Global scope: a variable declared outside any function or class has a global scope,
which means it is accessible from any part of the code.

• Local scope: a variable declared within a function has a local scope. It is only
accessible within the body of the function or method where it is declared. Once
the function or method completes execution, the variable goes out of scope, and its
value is lost.

• Block scope: a block-scoped variable is visible and accessible only within the block,
like loops or conditionals, in which it is declared.

According to the definition below, an Adsl program is a list of Statements ⟨S⟩, whose
grammar is defined in Grammar I.1.
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⟨ S ⟩ ::= .
| ⟨ v ← e⟩ Variable assignment
| ⟨ tup ← v⟩ Variable tupling
| ⟨ Cond ( v Ψ PT PE Φ)⟩ Conditional
| ⟨ For ( τ χ rev S P Ξ)⟩ Loop
| ⟨ Return v ⟩ Output of a program

⟨ e ⟩ ::= .
| ⟨ v ⟩ Variable
| ⟨ w ⟩ Intermediate constant
| ⟨ ⊕ tup⟩ Variable Addition
| ⟨ Call op tup ⟩ Function Call
| ⟨ Param i ⟩ Parameter access
| ⟨ Const i ⟩ Constant access
| ⟨ v ◁ β ⟩ Broadcast Projector
| ⟨ v ▷ α ⟩ Aggregation Projector
| ⟨ Pred ⟩ Predicate

⟨ Pred ⟩ ::= .
| ⟨ ∧ v w⟩ And
| ⟨ ∨ v w⟩ Or
| ⟨ ≠ v w⟩ Inequality
| ⟨ v ≤ w⟩

Grammar I.1.: Adsl expressions.

Most of the presented expressions are really simple and do not require further explana-
tions. We do a special focus on the most interesting ones and illustrate them with pseudo
code of simple examples below.

Parameter access versus Constant access

In Adsl, both parameters and constants can be assigned to a variable. This distinction is
made to allow for different treatments of inputs with respect to the gradient computation,
i.e., the parameters and the other inputs.

Example 1 (Traditional linear regression). Consider a simple linear regression on a set
of n points (xi, yi)i≤n, with the goal of finding the slope a and intercept b that minimize
the error:

n

∑
i=1
(axi + b − yi)2 =

n

∑
i=1
fa,b(xi, yi).

In this example, a and b are the parameters and the (xi, yi) are the constant values. The
Adsl program implementing the function fa,b is Adsl I.1.
We factorize the basic operations into a single Call. In this linear regression, the only

relevant gradient are ∇af and ∇bf as the values of the (xi, yi) data cannot be updated.
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⟨a ← Param0 ⟩
⟨b ← Param1 ⟩
⟨x ← Constant0 ⟩
⟨y ← Constant1 ⟩
⟨z ← Call fa,b(x, y) ⟩
⟨Return z ⟩

Adsl I.1.: Adsl program of linear regression.

Conditional

We present here how conditional statements are supported in Adsl.

⟨Cond(v Ψ PT PE Φ)⟩

v is the boolean branch variable while PT and PE are the then and else list of statements.
Variables used in PT or PE enter a branch by a ψ ∈ Ψ and exit by a ϕ ∈ Φ. The Ψ and Φ
make the variable scope local in the appropriate branch. The duality between these two
operators will be key in order to differentiate these statements. Formally it gives:

∀ψ(x,xT , xE) ∈ Ψ, ififif v thenthenthen xT ← x elseelseelse xE ← x

∀ϕ(yT , yE, y) ∈ Φ, ififif v thenthenthen y ← yT elseelseelse y ← yE

Example 2 (Adsl conditional). Let’s consider the following pseudo code of conditional
in Listing I.1.
Its Adsl form is

⟨x0 ← . . . ⟩
⟨Cond(v Ψ PT PE Φ)⟩
⟨z ← ⊕ y 1⟩

with

v = x0 > 0
Ψ = [ ψ(x0, xT , xE) ]
PT = [ yT ← xT ]
PE = [ yE ← −xE ]
Φ = [ ϕ(yT , yE, y) ]

With such construction, the scope of every variable used in conditional statements is
strictly local, which will be highly valuable for the differentiation process. There is no
equivalence between these statements and the SELECTION operation of the relational
algebra but both implement the if behavior.
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Broadcasts and aggregators

Broadcasts and aggregators [79,80] are a key feature of Adsl as it is intended to perform
automatic differentiation of relational programming languages. A broadcast from a table
to another duplicates the desired value in the corresponding line. If no broadcast is
specified, the natural one applies: the broadcast implied by the foreign key of the target
table matching the primary key of the input table. A simple example is given below in
Table I.4 where Category is the primary key of the Cat table while it is a foreign key in
the Obs table:

.
.

Category θ

A 1.2
B 1.8
C -2.2

.
Cat table

Id Category

01 B
02 A
03 A
04 B
05 C

.
Obs table

Id Category θ

01 B 1.8
02 A 1.2
03 A 1.2
04 B 1.8
05 C -2.2

.
Obs.θ ← Cat.θ ◁ β

.

Table I.4.: Broadcast from the Cat table to the Obs one.

Aggregators are the opposite of broadcasts where the values are aggregated (the default
aggregator is the sum) into a smaller table. If no relationship between the tables is
specified, the natural one applies: the aggregation implied by the foreign key of the input
table matching the primary key of the target table. The ability to express new relational
operations within Adsl is crucial for our strategy, as it enables us to create and incorporate
the necessary operations required by the gradient query that may not be present in the
original query.
Formally aggregators and broadcasts can be seen as a multiplication by a 0-1matrix,

also called association table. ⟨w ← v◁ β⟩ corresponds to the notation W =MβV where
Mβ ∈ {0; 1}n×m and W,V have the matching sizes. In the previous example the broadcast
between the Cat table to the Obs gives:

⎛
⎜⎜⎜⎜⎜⎜
⎝

1.8
1.2
1.3
1.8
−2.2

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 1 0
1 0 0
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜
⎝

1.2
1.8
−2.2

⎞
⎟
⎠
. (I.17)

.

.

This matrix point of view is helpful to understand their behavior, but in practice Adsl
broadcasts and aggregators are not implemented as matrices, which is one of the main
difference with tensor approaches.
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Loops

Loops are a key part of Adsl as they unlock complex model creation and are a major
enhancement compared to [11]. Moreover loops are the most resource consuming oper-
ations, thus a special care has been devoted in its design. We present here how loop
statements are supported in Adsl. Loop expressions are constructed as:
⟨For(τ χ rev S P Ξ)⟩

τ represents the variable indicating the size and the order in which the loop must be
traversed. In other words, this is the table being iterated over. χ serves as the entry
point for every external variable to be used inside the loop. This is achieved through
broadcasts or simple variable assignments, ensuring the block scope of these variables.
rev is a boolean variable indicating whether the loop is traversed in reverse order or not.
S is a set of states allowing the persistence of certain variables across loop iterations. A
state inherits a value defined in χ, and at the end of an iteration, the loop body updates
its state (↰ is used as notation). P consists of a list of statements that form the loop
body. Ξ represents the exit point for variables constructed during loop iterations.

Example 3 (Adsl loop). Let’s consider the following pseudo code

X <− . . .
acc = 0
Y = 0
f o r i from 0 to s i z e (X) do

acc = acc + x
Y[ i ] = acc

re tu rn Y, acc

Listing I.10: Pseudo-code of a program containing a loop.

Its Adsl form is

⟨X0 ← . . . ⟩
⟨a ← 0⟩
⟨For (χ false S P Ξ)⟩
⟨Return Y ⟩
⟨Return acc⟩

with

χ = [ x←X ◁ β ; a1 ← a ]
S = [ a1 ↰ a3 ]
P = [ a2 ← a1 + x ; a4, a3 ← a2 ]
Ξ = [ Y ← a4 ; acc← a3]

The scan operator, also known as prefix-reduce (scan is the name popularized by the
MPI library [81]), is a specific instance of a loop. Formally, a scan is the iteration of
a function f over a vector A, with the persistence of a state starting from x0. It is
represented in Figure I.16.
By example, the scan operator can implement exponential smoothing [82] in its simplest
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Figure I.16.: Scan Representation. The state s is initialized with x0 and is updated while
iterating the function f over the vector A.

form with fα(s, x) = (1 − α)s + αx, where α is the smoothing factor:

s0 = x0
st = fα(st−1, xt).

In this example, the starting point of the state is the first element of the vector iterated
over, but it is not necessarily the case as presented in Section I.5.5 on a in-production
example.

Having defined the expressions that constitute an Adsl program, we now turn our
attention to the specific variable scope requirements that we aim for our program to
fulfill.

I.4.2. SSA: Static single assignment form

Our goal is to enforce the strictest possible variable scope, which will ease the differenti-
ation process for Adsl programs. Definition 7 aims to achieve this objective.

Definition 7 (SSA). Static Single Assignment form (SSA) is a property of an intermedi-
ate representation, which requires that each variable be assigned exactly once in the global
scope, and every variable be defined before it is used.

Adsl is SSA, which ensures us that the scope of a variable cannot be extended be-
fore one of its assignments as there is only one of them. SSA is a common property for
programming languages and Zygote [38] also relies on it to implement automatic differ-
entiation on Julia. We go beyond this property in order to completely close the scope of
a variable by controlling its use, which also controls the scope of the adjoints.

I.4.3. SA: Single access

In addition to the SSA property, we add the Single Access property in Definition 8.

Definition 8 (SA). Single Access Form (SA) is a property of an intermediate represen-
tation, which requires that each variable be read no more than once even in the global
scope.
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Adsl is also SA. By enforcing this property, we ensure that the scope of a variable
cannot be extended after it has been read, as there is only one read operation allowed.
Let’s consider the function f1(x, y) = ex × (x + y). In Adsl it gives:

x← Param0

y ← Param1

a← ex

b← ⊕ x y

z ← a × b
Return z

becomes

x← Param0

y ← Param1

x1, x2 ← x

a← ex1

b← ⊕ x2 y

z ← a × b
Return z

The meticulous handling of variable scopes in Adsl ensures that transforming an SSA
program into an SSA-SA program is straightforward, provided that the tupling operation
is available. This process involves listing the read operations for each variable within its
scope and replacing all occurrences with an element of the tupling, dimensioned according
to the number of read operations.
The usefulness of the SA property might not be immediately apparent. First let recall

that Adsl programs are never directly written by programmers, they are compiled from
another programming language. Writing an SA-form would be very painful. Second, it
makes the use of every variable completely local, which simplifies its differentiation. Let
us remember that Adsl is designed for differentiation thus all design choices we have made
are in the direction of differentiation simplification. Finally the SA property leads to a
novel gradient estimator detailed in Chapter IV.

Remark 4. We have developed this approach in order to apply it for white box models
on supply chains. A way to do interpretable machine learning is to restrict the number
of parameters, i.e. way less than in deep learning, but with strong meaning and with
multiple uses in the objective function. This approach might not seem relevant for deep
neural networks with billions of parameters.

In Section I.1.2 we have presented how automatic differentiation is applied on Wengert
lists. We now explain how an SSA-SA Adsl program is an adequate representation of
such a list.

I.4.4. Adsl and Wengert lists

f ∶ Rp Ð→ Rq

In its SSA-SA version, an Adsl program can be directly converted into a Wengert list
without any substantial modification of the representation as stated below. The follow-
ing Theorem proves that Adsl has been appropriately designed to implement automatic
differentiation.

Theorem 1 (Adsl can express Wengert lists). The trace of an SSA-SA Adsl program can
be represented as another SSA-SA Adsl program.

Proof. Let us consider an SSA-SA Adsl program P , which consists of a list of statements.
Each statement ⟨S⟩ can be a tupling, a conditional, a variable assignment, a loop, or the
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output of the program. Statement by statement we construct the (very similar) Adsl
program representing the trace.
● If ⟨S⟩ is a tupling or the output of the program, the statement itself serves as a valid

representation of the trace.
● If ⟨S⟩ is a conditional ⟨Cond(v Ψ PT PE Φ)⟩, the trace evaluates only the

chosen branch. Without loss of generality, we assume that it is the first one. This
conditional evaluation can be represented in Adsl using the following statements:

⟨vt ←Ð True⟩
⟨Cond(vT Ψ PT PE Φ)⟩

The traces of the ψ ∈ Ψ and ϕ ∈ Φ are then reduced to a variable duplication to ensure
their local scope. The Ψ and Φ formulations remain valid for representing the trace, even
though only their then part will be utilized.
For the lists of statements, one can reason inductively for PT , while PE will not be

used at all.
● If ⟨S⟩ is a variable assignment ⟨v ←Ð e⟩, the statement itself provides a valid represen-

tation of the trace. This holds true for all assignments, with the exception of broadcasts
and aggregators. To understand why this also holds true, consider that broadcasts and
aggregators are related to table relationships known at execution time. As a result, they
can be regarded as a type of function call.
● If ⟨S⟩ is a loop ⟨For(χ rev S P Ξ)⟩, the same loop can be employed to rep-

resent the trace. Variables entering the loop via χ, either through a broadcast or a
duplication, are valid representations as previously discussed. The same logic is applica-
ble for variables exiting the block scope via Ξ.
Similar to the conditional case, we can use induction to demonstrate that the list of

statements P constitutes a valid representation of the trace.
For the states of S, they can be regarded as straightforward variable assignments at

the beginning and the end of the list of statements P .
The Adsl program representing the trace of P is by construction SSA-SA regarding

the minor modifications made to the already SSA-SA program, which concludes the
proof.

Adsl being able to express Wengert lists, as demonstrated by Theorem 1, is not a mere
consequence of our Adsl design, but rather a driving factor. Given that Wengert lists
are the primary objects used in automatic differentiation, we have developed Adsl as a
language that closely aligns with Wengert lists, enabling efficient differentiation directly
on it. In that sense, Theorem 1 plays a crucial role in the correctness of our approach
based on the design of a dedicated programming language for automatic differentiation.
Automatic differentiation on Wengert lists computes the gradient of the output with

respect to the input variables. In an Adsl, it translates into computing the gradient of the
parameters introduced by the parameter assignment statement. Once the expression of
Wengert lists into SSA-SA Adsl is established, we briefly discuss the two main approaches
to perform automatic differentiation on a program: reverse of forward modes [35].

Reverse mode

Let apply the reverse mode of automatic differentiation on the SSA-SA form of the f1
function:
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x← Param0

y ← Param1

x1, x2 ← x

a← ex1

b← ⊕ x2 y

z ← a × b
Return z

reverse mode gives

x← Param0

y ← Param1

x1, x2 ← x

a← ex1

b← ⊕ x2 y

z ← a × b

z ← 1

a, b← zb, za

x2, y ← b

x1 ← aex1

x← ⊕ x1 x2

Return x, y

Forward mode

When p≫ q forward mode is prohibitive. Even though recent work seems promising [83]
by limiting the number of Jacobian vector product computations, implementations by [84]
on Adsl did not perform well in our experiment context (see Section III.3). For this main
reason, we have selected reverse mode for implementing automatic differentiation in Adsl
in production at Lokad.

I.4.5. Automatic differentiation of Adsl

The following is the reason for all the choices we have made while designing Adsl. Adsl is
a programming language crafted for automatic differentiation. We have presented reverse
and forward mode and for all the reasons depicted above, we have decided to implement
reverse mode on Adsl. Our objective is to perform regression and classification with it,
that means we are in the case of q = 1. Thus an Adsl program P = [si for i = 0 . . . n]
being a list of statements, the reverse mode implementation of automatic differentiation
gives the adjoint program P :

P = P⃗ ; ⃗P .

The adjoint program P joins the forward pass P⃗ = [si for i = 0 . . . n if si ≠
Return] and the backward pass ⃗P = [si for i = n . . .0]. It is important to note that
the forward pass P⃗ has no direct relationship with the forward mode of automatic differ-
entiation.
In the following we present the adjoint ⟨s⟩ of the existing Adsl statements ⟨s⟩. The

adjoint of a statement ⟨s⟩ is the list of the statements that define the adjoint of the
variables read in ⟨s⟩. This list often reduces to a simple statement, as summarized in
Grammar I.2.
As presented in the reverse mode introduction, the adjoint program needs the variables

computed during P⃗ to compute ⃗P . To construct the adjoint of a program, we only use
other Adsl statements, as it is close by differentiation.
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Adjoint of a return

Every Adsl program ends with a return statement. By definition of the adjoint ω = ∂f
∂ω ,

we get f = ∂f
∂f = 1.

⟨Return v⟩ = ⟨v ← 1.0f⟩

If the output is a non scalar vector we broadcast the final adjoint ∂f
∂f = 0 into the

appropriate vector. Nevertheless it does not happen in practice as we aim to perform
gradient descent with the computed adjoint in order to minimize a function: one cannot
minimize a vector.

Adjoint of a param

When we finally reach the parameter assignment in the differentiation process, we can
output the computed adjoint as θ = ∂f

∂θ is the targeted value.

⟨v ← Param i⟩ = ⟨Return v⟩

Adjoint of a tupling

The SA property of Adsl relies on the tupling operation.

⟨tup← v⟩ = ⟨v1 . . . vt ← v⟩ = ⟨v ← ⊕ v1 . . . vt⟩

Other automatic differentiation systems like Zygote for Julia [38] are not SA and rely
on adjoint accumulation. Even though our approach increases the number of variables,
it simplifies the compilation process. Moreover, the differentiation of a tupling statement
is the foundation of the gradient estimator presented in Section IV.4.2.

Adjoint of a sum

The sum operation is not treated as a standard call operator in Adsl. This is due to its
adjoint being a tupling statement. Given that tupling is unique in Adsl to support the
SA property, special consideration is afforded to the sum operation:

⟨v ← ⊕ tup⟩ = ⟨v ← ⊕ v1, .., vt⟩ = ⟨tup← v⟩ = ⟨v1, .., vt ← v⟩

Adjoint of a Call

The adjoint of a call function can be found via the chain rule and the basic derivative
formula. We give a list in Table I.5 but it does not need further explanations.
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Function Adjoint

y = ex x = y × ex
y = cosx x = y × sinx
y = sinx x = −y × cosx

y = lnx x = y
x

y = xp x = y × p × xp−1
y = xa × xb xa = y × xb, xb = y × xa

Table I.5.: Adjoint of calls.

Adjoint of a conditional

The introduction of the Ψ and the Φ reveal all its usefulness while differentiating the
conditional statement. We observe an elegant duality between these two operators as
the adjoint of a ψ is a ϕ and vice versa. This can be understood as reverse mode back
propagates adjoint through the code: when the variable enters the branch its adjoint
exits its, when the variable exits the branch its adjoint enters its.

⟨Cond(π Ψ PT PE Φ)⟩ = ⟨Cond(π Φ PT PE Ψ)⟩

With Ψ = [ψi] = [ψi] and Φ = [ϕi] = [ϕi] while ϕ(yT , yE, y) = ψ(y, yT , yE) and ψ(x,xT , xE) =
ψ(xT , xE, x).
As PT and PE are lists of statements, their adjoint is the reversed list of the statements’

adjoint:

with PT = [si for i = 0 . . . n] then PT = [si for i = n . . .0]

and PE = [si for i = 0 . . .m] then PE = [si for i =m. . . 0]

Adjoint of broadcasts and aggregators

Let’s recall that formally, broadcasts and aggregators are matrix multiplication and cor-
respond to the notation W =MV , i.e. Wi = ∑m

j=1Mi,jVj. Applying the reverse mode on
it gives

Wi =
m

∑
j=1
Mi,jVj

Vj =
∂f

∂Vj
=

n

∑
i=1

∂f

∂Wi

∂Wi

∂Vj

=
n

∑
i=1
Mi,jWi,

one can recognize the formula of the matrix multiplication by the transpose ofM thus:
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Wi =
m

∑
j=1
Mi,jVj

Vj =
∂f

∂Vj
=

n

∑
i=1

∂f

∂Wi

∂Wi

∂Vj

=
n

∑
i=1
WiMi,j.

This directly gives the adjoint of broadcasts and aggregators as it is a specific case in
relational manipulation of matrix manipulation:

⟨w ← v ◁ β⟩ = ⟨v ← w ▷ βT ⟩
⟨w ← v ▷ α⟩ = ⟨v ← w ◁ αT ⟩

The transpose of a broadcast is an aggregator and vice versa. This matrix point of
view can also justify the adjoint of a tupling that can be seen as the multiplication by
the 1⃗ vector: the multiplication by its transpose leads to a sum.

Adjoint of a scan

As presented in the introduction of the loop, the scan is a specific instance of this state-
ment. We first present the adjoint of the scan operator to then generalize. To properly
define the adjoint of a scan we write it as a Wengert list, i.e. we unroll the loop iteration.
The generic unrolled trace of the execution of a scan is the following:

s0 = x0
s1 = f(s0, a0)
s2 = f(s1, a1)
s3 = f(s2, a2)
. . .

sn = f(sn−1, an−1)
sn+1 = sn

In Adsl it gives
⟨For(A χ false S P Ξ)⟩

with

χ = [ x← x0 ; a← A ]
S = [ x ↰ s ]
P = [ s← Callf (x, a) ]
Ξ = [ sn+1 ← s ; S ← s ]
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The scan adjoint is implemented in the JAX [62] automatic differentiation library but
is barely documented. We provide a comprehensive way to formalize the adjoint of such
operator. Applying reverse mode automatic differentiation on the unrolled trace of the
scan gives the following:

sn = sn+1
sn−1, an−1 = snf(sn−1, an−1)

. . .

s2, a2 = s3f(s2, a2)
s1, a1 = s2f(s1, a1)
s0, a0 = s1f(s0, a0)
x0 = s0

One can also wrap it up in another Adsl loop statement:

⟨For(A χ false S P Ξ)⟩ = ⟨For(A χ′ true S′ P ′ Ξ′)⟩

with

χ′ = [ a← A ; s← S ; s′n+1 ← sn+1 ]
S′ = [ s′n+1 ↰ s ]
P ′ = [ w ← Call f (s, a)

s′, a← Mul s w ]
Ξ′ = [ A← a ; x0 ← s ]

s0, s0, a0 s2, s2, a2 sn, sn, an

sn+1x0

Figure I.17.: Adjoint of scan Representation. The state s is initialized with sn+1 and is
updated while iterating the function f over the vectors S,S,A in reverse
order.

The adjoint of a scan is thus another scan, Figure I.17 represents the backward pass
on the scan to compute its adjoint. It highlights Adsl closure by differentiation.

Adjoint of loop

Now that the adjoint of a scan has just been detailed, we can tackle the more generic
case of a loop in a very formal way.
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Let consider an Adsl loop I.18:

⟨For(τ χ false S P Ξ)⟩ (I.18)

with

Ξ = [ ξi ∶ ξ(oi, ii, βi) ]
S = [ si ∶ bi ↰ ei ]
χ = [ χi ∶ χ(ii, oi) ]

Its adjoint is the constructed Adsl loop I.19:

⟨For(τ χ false S P Ξ)⟩ = ⟨For(τ Ξ true S P χ)⟩ (I.19)

with

Ξ = [ ξi ∶ ξ(oi, ii, βi) = χ(ii, oi) ]
S = [ ei ↰ bi ]
χ = [ χi ∶ χ(ii, oi) = ξ(oi, ii) ]

Hard coded adjoints

There are some functions for which we have decided to hard-code their derivative. The
set of round/ceiling/floor functions derivative is mathematically zero almost everywhere,
while we would like to propagate gradient in it as it is globally increasing as depicted in
Figure I.18. Thus we have hard-coded their gradient to be 1.

−4 −2 2 4

−4

−2

2

4

y = floor(x)

y = x − 1
2

x

y

Figure I.18.: The floor function rounds down its input to the nearest integer. Its derivative
is zero almost everywhere while its general trend is linear.

Many other differentiation libraries do the same trick in order to enable gradient based
optimization with such functions. This is particularly important in supply chain that
works with indivisible goods.
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⟨v ← Param 0 ⟩
⟨w ← Param 1 ⟩
⟨z ← Call random.normal v w ⟩
⟨Return z ⟩

Adsl I.2.: Random call.

⟨v ← Param 0 ⟩
⟨w ← Param 1 ⟩
⟨zero ← 0.0f ⟩
⟨one ← 1.0f ⟩
⟨n ← Call random.normal zero one ⟩
⟨m ← Call mul n w ⟩
⟨z ← Call mul v m ⟩
⟨Return z ⟩

Adsl I.3.: Adsl program of reparameterization trick.

Adjoint of random functions

Adsl supports many random functions such as random.normal or random.poisson. Let
consider that the random seeds are handled separately,
Let consider Adsl I.2.
Even though we do not have a appropriate adjoint for random.normal, we can apply

the reparameterization trick from Equations I.20 and I.21, which rely on a rewriting of
the gaussian random variable.

∂.

∂µ
N (µ,σ) = ∂.

∂µ
[µ + σN (0,1)] = 1 (I.20)

∂.

∂σ
N (µ,σ) = ∂.

∂σ
[µ + σN (0,1)] = N (0,1). (I.21)

In Adsl, we need to rewrite the statements in Adsl I.3:
With this formulation, the differentiation of these statements is now possible. We can

apply a similar trick for random.uniform but we did not find any suitable solution for
the other random functions as random.poisson, random.negativeBinomial . . .

Adjoint of predicates conditional

In the previous paragraph Adjoint of conditional, we have described that gradient is
not propagated through the predicate of a conditional: π is not used in any sense. This
is the mathematically correct implementation of automatic differentiation but it has to
be specified to users of differentiable programming on relational data.
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Let consider the isPos function that is 1 on R+ and 0 on R−⋆, represented in Figure
I.19. It is clear that its derivative is zero, thus the update gradient does not apply in
order to find a global minimum. Differentiable programming users have thus to recall that
gradient is not propagated through the predicate of a conditional. As a consequence, our
paradigm is not suited to learn policies via gradient descent and is another extensively
studied research subject [26,85,86].

−4 −2 2 4

−0.5
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y = isPos(x)
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y

Figure I.19.: isPos function. Its derivative is zero almost everywhere.

Adjoint of real valued function of an integer variable

Consider a function fz ∶ Z→ R. While this function is not defined on a continuous space,
it is still possible to determine whether it is locally increasing or decreasing, as illustrated
in Figure I.20. Additionally, composing this function with the floor function results in a
real-valued function:

fz ○ floor ∶ R→ R

To properly define the local derivative of fz, we could add such functions to the list of
supported ones in Call statements. Let n ∈ Z and y = fz(n). To define n, we need to
consider the previous and next values of fz. If f(n−1) ≤ f(n) ≤ f(n+1), then we propose

n = f(n+1)−f(n−1)
2 , which is similar to the finite difference presented in Section I.1.1. This

same approach applies if f(n − 1) ≥ f(n) ≥ f(n + 1). However, it becomes different when
f(n) is a local extremum. Let’s assume that n is a local minimum of fz. If y ≥ 0, then
we are on a local minimum of the objective function, and n = 0. However, if y < 0, then
we are on a local maximum of the objective function, and we construct the gradient in
the strongest direction. Specifically, if f(n + 1) ≥ f(n − 1), then n = f(n + 1). Otherwise,
n = −f(n − 1). We sum this strategy in Figure I.21. It should be noted that this logic
can only be implemented in reverse mode as it requires knowledge of the sign of y. This
consideration further justifies our decision to select this particular mode.
Writing this logic in Adsl involves many nested conditional and is not digest to read.

Consequently we do not propose its statement version and stick to the previous description
of the adjoint construction.
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Figure I.20.: Representation of a real valued function of an integer variable.

fz

nn − 1 n + 1

(a) fz(n − 1) ≤ fz(n) ≤ fz(n + 1)

fz

nn − 1 n + 1

(b) fz(n + 1) ≤ fz(n) ≤ fz(n − 1)

fz

nn − 1 n + 1

-

+

(c) fz(n − 1) ≥ fz(n) ≤ fz(n + 1)

fz

nn − 1 n + 1

+

-

(d) fz(n − 1) ≤ fz(n) ≥ fz(n + 1)

Figure I.21.: Adjoint of the real valued function of an integer variable in function of
the surrounding values and the backpropagated adjoint. The adjoint is
represented by the slope of the gradient arrows. We display the arrows in
red when fz(n) ≥ 0, in blue when fz(n) < 0, in magenta otherwise.

Adsl closure by differentiation

All the previous adjoints are built with other Adsl statements and a comprehensive sum-
mary is given in Grammar I.2. The derivative of an Adsl program being another Adsl
program has two main consequences.
First, this closure gives automatic access to higher order derivatives. Gradient based

methods, like presented in Section II.1, often rely on the first order of the gradient but
some higher one exists: [87] [88]. These methods are very costly in terms of resources but
they can be implemented with our automatic differentiation system as we can apply the
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differentiation process to the adjoint program.

∂2P

∂θ2
= ∂

∂θ

∂P

∂θ
.

Second, the adjoint program being considered as a regular Adsl one, all the compiler
optimizations like dead code elimination provided with Adsl are available. The compiled
codes of the function and the derivative through the execution process follow the same
pipeline. This is particularly useful in relational programming languages where query
optimization is an extensive subject [89] [90]. The adjoint of a query being a query makes
our automatic differentiation system composable with any other automatic differentiation
architecture querying a database for example. For this reason we also implemented the
forward mode to make it compatible with automatic differentiation systems relying on
this mode.

⟨S⟩ ∶∶= ⟨S⟩ ∶∶=
∣ ⟨v ← e⟩ ∣ ⟨ē← v̄⟩
∣ ⟨tup← v⟩ ∣ ⟨v ← ⊕ tup⟩
∣ ⟨Cond(v Ψ PT PE Φ)⟩ ∣ ⟨Cond(π Φ PT PE Ψ)⟩
∣ ⟨For(τ χ rev S P Ξ)⟩ ∣ ⟨For(τ Ξ true S P χ)⟩
∣ ⟨Return v⟩ ∣ ⟨v ← 1.0f⟩

⟨e⟩ ∶∶= ⟨e⟩ ∶∶=
∣ ⟨v⟩ ∣ ⟨v⟩
∣ ⟨w⟩ ∅
∣ ⟨⊕ tup⟩ ∣ ⟨tup⟩
∣ ⟨Call op tup⟩ ∣ ⟨Call op tup tup⟩
∣ ⟨Param i⟩ ∣ ⟨Return v⟩
∣ ⟨Const i⟩ ∅
∣ ⟨b ◁ β⟩ ∣ ⟨b ▷ βT ⟩
∣ ⟨a ▷ α⟩ ∣ ⟨a ◁ αT ⟩
∣ ⟨Pred⟩ ∅

Grammar I.2.: Summary of the Adsl Grammar I.1 and the corresponding adjoint for
each statement. The adjoint for each statement is described in detail in
the respective paragraph above. The reverse pass of the derivative for an
Adsl program, represented as a list of statements, consists of the adjoint
lists associated with each statement.
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I.5. Application

In this section we present the results of the application of automatic differentiation in a
domain specific language: Envision. To illustrate how Envision treats Differentiable pro-
gramming as a first-class citizen we propose two examples of optimization thus enabled.

I.5.1. Envision: a domain specific language

Envision is a specialized Domain Specific Language (DSL) developed by Lokad that fo-
cuses on supply chain optimization. Its user-friendly design and targeted domain-specific
features make it an effective tool for domain experts to model and manage complex supply
chain scenarios. There is an open version of Envision5 and its documentation is public6.
It is a Python-like implementation of SQL. At a higher level, Envision combines aspects

of array programming and relational algebra. It is designed for conducting operations
on relational databases commonly used in enterprise systems. Additionally, Envision
abstracts the need for loops, prioritizing performance and reliability, as observed in array
programming languages. In Envision, each variable corresponds to a table and technically
represents a vector, which is a collection of values with one value per row in the table.
Consequently, when two variables belong to the same table, it becomes possible to execute
operations on all rows simultaneously. Notably, the Envision compiler is predominantly
written in F#. An illustration of the simplified7 pipeline is presented in Appendix in
Figure A.1.
Each variable in Envision belongs to a specific table. To enhance conciseness and

clarity, the table name can be omitted when referring to the scalar table that plays a
specific role in Envision, as highlighted in Listing I.11.

Sca la r . g r e e t i n g = ”HelloWorld ! ”
/// i s e q u i v a l e n t to
g r e e t i n g = ”HelloWorld ! ”

Listing I.11: First Envision script, which stores a text value into a created attribute of
the Scalar table.

In the general case, the table name precedes the variable name, and the dot (.) serves
as a separator between them. In relational algebra the variable name is considered as
an attribute of the table. One of the main specificity and advantages of Envision is
that the tables and the relationships between them are reified. Primary and foreign keys
characterize the relational structure of the tables processed by Envision. With the proper
dimensions in place between the tables of interest, most operations can be performed with
little syntactic overhead. This approach differs from the more traditional approach taken
by query languages, joins between tables are thus implicit. The tables and their keys
are handled as a whole, which makes TOTAL JOIN implicit between any tables T1 and
T2 where the primary key of T1 is a secondary key of T2. Of course the other one can
be requested with a specific semantic. This feature makes the Envision code writing
very light and prevents many broadcasts errors. One of the key points is that all these
relationships are known at compilation time and the user do not need to wait for the

5https://try.testing.lokad.com/
6https://docs.lokad.com
7Between Envision and its execution, there exist nearly 10 intermediate programming languages, all of
which have been developed by Lokad.

52



execution errors to adapt its query. On the contrary, SQL implementations create many
intermediate tables on the fly, every Envision table is reified and directly queryable.
In Listing I.12 we present how the Upstream table can be created from the Observations

table thanks to a simple Aggregation of one of its non primary keys, which becomes a
foreign one with the new table creation. This relationship between the two tables is
reified and let the TOTAL JOIN be implicit.

/// Creation o f the Upstream t a b l e based on the Category
/// vec t o r from the t a b l e Observa t ions :
t ab l e Upstream [ Category ] = by Observat ions . Category

/// Creation o f a new a t t r i b u t e in the Upstream t a b l e
Upstream . NewAttribute = . . .

/// Creation Observa t ions . NewAttribute from a
/// TOTAL JOIN broadcas t o f Upstream . NewAttribute
Observat ions . NewAttribute = Upstream . NewAttribute

Listing I.12: Broadcasts in Envision.

I.5.2. Differentiable programming as a first-class citizen

Differentiable programming is a first-class citizen in Envision. We have seamlessly in-
corporated automatic differentiation within the Envision compiler, ensuring that its in-
tegration with Adsl is an integral part of the language’s lowering process. In that sense,
this approach aligns closely with the compiler-based approach discussed in Section I.1.3,
further emphasizing the significance of automatic differentiation in Envision. By doing
so, we statically detect all the differentiation related errors and display errors statically.
It means that the user does not have to be (too) careful while writing Envision in order to
get access to the differentiation as every static mistake is notified. This is very interesting
as the main users of this (and the other) relational programming language, are supply
chain practitioners that have a deep understanding of supply chain complexity but do
not master all the gradient theory. Their expertise makes them the perfect users of Dif-
ferentiable programming as they can implement relevant white box models to solve their
daily problems. This position is quite new. There was an attempt to make Swift [67]
one of the first popular programming languages with Differentiable programming as a
feature, but the project was recently abandoned. As presented in Section I.3, a query
is mathematical and relational. In that sense, any mathematical operation is supported
in the optimization blocks. For the relational part, the only limitation is to satisfy the
PolyStar form of Definition 6 for the used tables.
In the following we present two applications of differentiable programming through

Envision. The first one is a relational linear regression example. The second one is a
model used daily at Lokad to forecast demand.

I.5.3. Relational linear regression and Bayesian inference

Relational linear regression

Listing I.13 implements the relational linear regression model in Envision. The autodiff
keyword opens the automatic differentiation block code. This block not only performs
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automatic differentiation of the query but also conducts end-to-end optimization by uti-
lizing stochastic gradient descent thanks to the automatic access to the gradient query.
In essence, autodiff offers more than just automatic differentiation.
As described in Section I.3.4, the observation node corresponds to the Observation

table, where each variable in the block is observed at the Observation level. This implies
that the vectors in the Observation table and the Upstream table can be broadcasted
into scalar variables, as the Polystar rules apply in the autodiff blocks. It is important
to note that the Category table, previously referred to as Table I.1, is now referred to as
the Upstream table in order to maintain coherence with PolyStar terminology.
This example was presented in [77] applied on the highly categorical dataset of Chicago

taxi rides [91].

1 au t o d i f f Observat ions epochs : 10 l earn ingRate : 0 . 0 1 with
2 params Upstream . a auto
3 params b auto
4
5 /// Re l a t i ona l
6 a = Upstream . a
7 X = Observat ions .X
8 Y = Observat ions .Y
9

10 /// Mathematical
11 p r ed i c t i on = a ∗ X + b
12 e r r o r = p r ed i c t i on − Y
13
14 return e r r o r ˆ2

Listing I.13: The autodiff block in Envision exemplifies the implementation of relational
linear regression. In this block, stochastic gradient descent is executed for
10 epochs (line 1), utilizing the Adam optimizer with its default parameters
(presented in Chapter II). Firstly, parameters are created, including the
vector a in the Upstream table and the scalar b (lines 2-3). Subsequently,
for each epoch, the block iterates over the Observations table. For every line
in this table, the gradients of Upstream.a and b are computed, and Adam is
employed to update them (performed on each line). The output of the block
is the updated version of the ’Upstream.a’ and ’b’ parameters. It is worth
noting that all other intermediate variables generated during the autodiff
block are not preserved.

Upstream Observations

Figure I.22.: PolyStar of the relational linear regression example. By construction in
the Listing I.12, the primary key of the Upstream table is a foreign key of
the Observations table, which is a sufficient condition to allow the depicted
broadcast. In other words, each line of the Observations table corresponds
to a unique line in the Upstream table, allowing access to the appropriate
line of the slope vector.

As presented in Section I.3 this query is both relational and mathematical. The rela-
tional aspect is the broadcast from the Upstream table into the Observations table and is
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easily presented in the PolyStar from Figure I.22. The mathematical part is the formula
of the raw linear regression, and the choice of the l2 norm.
In their works, [11, 74] suggest evaluating their in-database machine learning systems

using regular linear regressions. However, we posit that a relational linear regression
would be a more relevant example for assessing the performance of these proposed sys-
tems. This is because relational programming languages provide the simplest framework
for constructing this type of categorical model. Implementing such a model in PyTorch
or TensorFlow would not align naturally, whereas relational programming languages are
well-suited, as demonstrated in Listing I.13. A standalone version of this code, ready
for execution8, is provided in Appendix Listing A.1. The additional version in this list-
ing can assist readers who are interested in gaining a better understanding of Envision
functionalities. One can also find the complete documentation of the autodiff block here9.

Bayesian inference

Bayesian inference is a method of statistical inference in which Bayes’ theorem is used
to update the probability for a hypothesis as more evidence or information becomes
available. It is an approach that allows us to quantify uncertainty in a principled way,
incorporating prior knowledge and observed data to make predictions about unobserved
quantities. In the context of machine learning, Bayesian inference has a number of de-
sirable properties. Firstly, it provides a coherent framework for dealing with uncertainty,
which is crucial in many real-world applications like supply chain [92]. For instance, in
supply chain optimization, it is often the case that we have incomplete or noisy data, and
Bayesian methods allow us to quantify and manage this uncertainty in a structured way.
Furthermore, Bayesian methods naturally incorporate prior knowledge into the learning
process, which has similarities with differentiable programming where domain experts
play a crucial role.
In order to extend the work on relational linear regression, we will exploit the power of

automatic differentiation to perform Bayesian inference. For a Bayesian linear regression
model, instead of estimating point values for the parameters (slope and intercept), we
aim to estimate their posterior distributions given the observed data. This requires us
to define a prior distribution over these parameters. Common choices include Gaussian
or Laplace distributions, which are both differentiable and hence suitable for automatic
differentiation. Opting for the Gaussian distribution enables us to utilize its closed-form
log-likelihood, which is inherently differentiable. This is possible as it can be readily
implemented in pure Envision code, which is fully differentiable.
The posterior distribution of the parameters, given the observed data, is then propor-

tional to the product of the likelihood of the data given the parameters and the prior
distribution of the parameters. The likelihood is defined by the Gaussian distribution
centered on the linear function of the inputs, parameterized by the slopes and the shared
intercept, with a standard deviation.
This approach allows us to leverage the power of Bayesian inference in relational linear

regression. Not only do we obtain a point estimate of the parameters, we also get a
measure of uncertainty in the form of the posterior distribution. This can be crucial in
many applications where it is important to quantify uncertainty in predictions. The use
of automatic differentiation makes this approach scalable to large datasets and multiple

8at https://try.lokad.com/s/Peseux-PhD-RLRegression
9https://docs.lokad.com/language/differentiable-programming/
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models. Listing I.14 illustrates the Bayesian relational linear regression model fit to the
same toy dataset. Incorporating uncertainty through Bayesian inference is key in supply
chain problems where a quantitative approach is a game changer [93,94].

au t o d i f f Observat ions epochs : 10 l earn ingRate : 0 . 0 1 with
params Upstream . a auto
params b auto
params sigma auto

/// Re l a t i ona l
a = Upstream . a
X = Observat ions .X
Y = Observat ions .Y

/// Mathematical
p r ed i c t i on = a ∗ X + b

/// Bayesian
re turn − l o g l i k e l i h o o d . normal ( p r ed i c t i on , sigma , Y)

Listing I.14: autodiff block in Envision of the relational linear regression example in its
Bayesian version.

I.5.4. Production example: forecasting retail

Differentiable programming on relational programming languages is promising and lets
us build more complex models than relational linear regression.
We have successfully deployed to production the model presented in Figure I to fore-

cast weekly sales of Celio, a large retail company. Sales forecasting is vital for businesses
because it enables effective demand planning, inventory management, supply chain opti-
mization, financial planning, sales and marketing strategies, risk management, resource
allocation, performance evaluation, and informed decision making. It helps businesses
optimize operations, allocate resources wisely, mitigate risks, and achieve growth and
profitability.
Lokad experts have used the framework we have developed to create this model and

applied it on a dataset that contains 3 years of history and concerns 100k different items.
The dataset contains multiple categorical inputs for each item. The objective is to forecast
sales at the item level as it is more important than at an aggregated level. It provides
businesses with granular insights and enables more accurate demand planning and in-
ventory management. By forecasting sales at the individual item level, businesses can
understand the demand patterns and fluctuations specific to each product. This allows
for better allocation of resources, optimized production, efficient inventory stocking, and
targeted marketing strategies. It also helps identify top-performing products, optimize
pricing strategies, and identify underperforming products that may require adjustments
or promotions.
We recall the form of the model for each item i in the dataset:

ŷ(i,week) = θstore(i) × θcolor(i) × θsize(i) ×Θ[group(i),WeekNumber(week)].

The goal is to generate a vector in the ItemsWeek table that closely approximates
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⟨θstore ← Param 0 ⟩
⟨θcolor ← Param 1 ⟩
⟨θsize ← Param 2 ⟩
⟨ΘWN ← Param 3 ⟩
⟨y ← Const 0 ⟩
⟨θWN

store ← θstore ◁ βWN ⟩
⟨θWN

color ← θcolor ◁ βWN ⟩
⟨θWN

size ← θsize ◁ βWN ⟩
⟨ŷWN ← Call mul θWN

store θWN
store θWN

size ΘWN ⟩
⟨ŷ ← ŷWN ◁ βW

WN ⟩
⟨E ← Call minus ŷ y⟩
⟨E2 ← Call square E ⟩
⟨loss ← E2 ◁ α ⟩

Adsl I.4.: Adsl program of the categorical model depicted in Equation I.2. The broadcast
βWN simply duplicates a scalar value into the WeekNumber table, while the
broadcast βW

WN broadcasts the value into the Week table on the corresponding
week number.

the existing ItemsWeek.Target values on historical data. Note that this model could be
formalized as a small neural network with matrix multiplications but it would lose its
simplicity of understanding. The Polystar associated with such a model is depicted in
Figure I.23. We choose the Items table to be the observation table. Thus the tables Store,
Color, Size and Group are considered as upstream tables because their primary keys are
foreign keys of Items. The tables WN and Week have no relationships at all with Items,
they are considered as full tables. GroupWN is a cross table between an upstream table
(upstream-cross table) and a full table (WN ), thus it is an upstream-cross table. The
same logic also turns ItemsWeek into an upstream-cross table. The Adsl program of the
model is written in Adsl I.4.
Such model has the following number of parameters:

∣ Store ∣ + ∣ Color ∣ + ∣ Size ∣ + ∣ Group ∣ ×52.

Let recall that our objective is to apply Stochastic Gradient Descent on the observation
table. Hence for each line of the observation table, there corresponds one and only one
line in the upstream tables thanks to the TOTAL JOIN operator. It motivates the natural
broadcasts from line 8 in Listing I.15.
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.

Store Color Size Group

Items WN

WeekGroupWN

ItemsWeek

Figure I.23.: PolyStar from Celio’s application. Items is the observation table and all the
other tables are defined by their relationship with it. The upstream tables
broadcast into Items as their primary keys are foreign keys for Items.

au t o d i f f Items epochs : 10 l earn ingRate : 0 . 0 1 with
params Store . theta in [ e p s i l o n . . ] auto
params Color . theta in [ e p s i l o n . . ] auto
params S i z e . theta in [ e p s i l o n . . ] auto
params GroupWN. theta in [ e p s i l o n . . ] auto

/// Re l a t i ona l
thetaSt , thetaC , the taS i = Store . theta , Color . theta , S i z e . theta
ItemsWeek . thetaGroup = GroupWN. theta
/// Mathematical
ItemsWeek . Pred i c t i on = thetaSt ∗ thetaC ∗

the taS i ∗ ItemsWeek . thetaGroup

/// Re l a t i ona l
Week . Pred i c t i on = ItemsWeek . Pred i c t i on
/// Mathematical
Week . Error = Week . Pred i c t i on − ItemsWeek . Target
Week . Error2 = Week . Error ˆ2

/// Re l a t i ona l
l o s s = sum(Week . Error2 )
re turn l o s s

Listing I.15: The autodiff block in Envision implements the multiplicative model on Celio
data. This model is end-to-end differentiable, including the implicit broad-
casts that are natively supported by Envision. The exhaustive code is pro-
posed in Appendix Listing A.2

In order to retrieve the color parameter related to a specific item, one can use the
TOTAL JOIN operator as presented in Listing I.16.
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SELECT Color . theta
FROM Items
TOTAL JOIN Color

ON Items . Color = Color . Color

Listing I.16: TOTAL JOIN to retrieve Color.θ in SQL code.

Advantages of this model

Such an approach has multiple advantages. First this is a white box model and its
predictions can be explained as its parameters convey meaning. For the color vector
θcolor(red) > θcolor(blue) has the direct translation that the red clothes sell better than
the blue ones. This is detailed in Section III.1.2. Second, such a model can be used to
predict unseen items as the full vectors Store.θ, Group.θ and Size.θ are learned and a new
item giving an unseen combination can be predicted yet. Third, it is very adaptive, which
is one of the main advantages of differentiable programming. If one wants to take into
account a new category as the type of the item (pants, shirts . . . ), this is super easy and
one does not need to restart the optimization from the beginning as it is a multiplicative
model. For example one can easily take into accounts ambient factors like discounts or
marketing campaigns by modifying the model. Thanks to automatic differentiation one
can tweak the model without considering the generated gradient code. Lastly, the small
number of parameters, compared to deep learning, makes their optimization relatively
fast. Thus this model can be updated daily with the new data without consuming too
many resources.

Performance

An alternative version of this model is implemented at Lokad. The model leveraged
stochastic gradient descent optimization to process over 1.1 billion observations, iterating
ten times on the full dataset. Even with 4,000 parameters to update, the optimization
process took only 350 seconds, demonstrating computational efficiency.
In another retail forecasting model implemented for another client, which we cannot

disclose due to confidentiality reasons, over a million parameters are updated in each
epoch consisting of more than 100,000 observations. The process of each epoch takes
approximately a dozen seconds. An even faster version based on parallelism [95] has
been developed and unlocked optimization on even larger datasets.

I.5.5. Scan operator

In the production example, our approach involves creating an estimated vector of sales in
the Week table and then comparing it week by week with the true sales vector. Although
this is a valid approach, it has its disadvantages. Let’s assume that sales are sparse and
occur only once a year. Forecasting sales for this week with an error of one week is better
than forecasting with an error of ten weeks. However, in both cases, the obtained loss is
the same. An alternative method for computing the loss may be needed to address this
issue.
If one can construct a cumulative vector of the sum of sales, comparing the cumulative

vectors would yield the desired behavior: being one week late in the forecast would not
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be as penalized as being ten weeks late. When introducing the statements in Adsl, we
identified the scan operator as a special case. It could potentially provide a solution to
this issue. By scanning both the estimated and true sales vectors, one can compute the
cumulative sum. An example of this approach based on an each block implemented in
Envision is provided in Listing I.17.

au t o d i f f Items epochs : 10 l earn ingRate : 0 . 0 1 with
params Store . theta in [ e p s i l o n . . ] auto
params Color . theta in [ e p s i l o n . . ] auto
params S i z e . theta in [ e p s i l o n . . ] auto
params GroupWN. theta in [ e p s i l o n . . ] auto

/// Re l a t i ona l
thetaSt , thetaC , the taS i = Store . theta , Color . theta , S i z e . theta
ItemsWeek . thetaGroup = GroupWN. theta

/// Mathematical
ItemsWeek . Pred i c t i on = thetaSt ∗ thetaC ∗

the taS i ∗ ItemsWeek . thetaGroup

/// Re l a t i ona l
Week . Pred i c t i on = ItemsWeek . Pred i c t i on
Week . Target = ItemsWeek . Target

wcp = 0
wt = 0
Week . Cumulat ivePredict ion , Week . CumulativeTarget =

each Week scan week
keep wcp
keep wt
wcp = wcp + Week . Pred i c t i on
wt = wt + Week . Target
re turn (wcp , wt )

/// Mathematical
Week . Error = Week . Cumulat ivePredict ion − Week . CumulativeTarget
Week . Error2 = Week . Error ˆ2

/// Re l a t i ona l
l o s s = sum(Week . Error2 )

re turn l o s s

Listing I.17: Alternative version of autodiff block implementing the multiplicative model
in Envision on Celio data. The scan operator is differentiable and enables
the construction of a refined loss based on cumulative sum.

The distinction between the models presented in Listings I.15 and I.17 is subtle but
can have a significant impact on the final results. We firmly believe that employing a
white-box and customizable model, guided by domain experts, will be a game-changer
in the industry. Such models will be more adaptable, and experts will no longer per-
ceive modifications to a production model as an insurmountable task. This will foster
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a culture of continuous improvement. Our belief in this approach is strongly reinforced
by the results we have witnessed at Lokad through the utilization of relational query
differentiation.

I.5.6. Mathematical insights

On multiplicative models

Such model is multiplicative, we have tested other forms like the additive one inspired by
the Prophet library [96]. The presented model is the most effective one we designed but
one has to be careful implementing it. One of the main issues with such a multiplicative
model is the risk of having parameters moving towards 0. If θnstore ∼ 1

n and θncolor ∼ n then
θnstore × θncolor ∼ 1. This kind of numerical divergence of the parameters but not of the
prediction makes the model very unstable. Then we force parameters to be superior to
a fixed ϵ: this is the sense of the boundaries in the parameter definition. This simple
trick makes the learning way more stable. Moreover, well initializing the parameters of
a model is a key point of the optimization success. In the present code, parameters are
initialized by default which does not give great results in practice.Thus we develop a more
elaborated approach in Section III.3.4.

On adaptive optimizers

Optimizers are properly introduced in Section II.3.1
To perform optimization, the gradient alone is not enough, an optimizer is also required.

Optimizers are algorithms that update a parameter based on its gradient. Some of them,
such as AdaGrad and Adam, are described as adaptive because they can handle multiple
regimes of gradient values, making them ideal for use with differentiable programming in
relational programming languages. This is especially important when models are built by
domain experts who may have limited knowledge of gradient-based techniques. In such
cases, it is important for non-problem related issues to be handled automatically, making
the use of adaptive optimizers necessary.
The Envision optimization blocks use the Adam optimizer with its default values for

parameter updating. After extensive testing, we found that this optimizer performed the
best overall and showed good results for a variety of problems. One important observation
we made while using this optimizer in production is that since the updates for Adam’s
parameters are approximately bounded by the learning rate, the parameters should be
on the same scale. Specifically, we expect the amplitude (amp) between the minimum
and maximum values of interesting parameters to respect the following relation for each
parameter:

amp ≤ 2 × α × updates. (I.22)

Here, α is the learning rate and updates is the total number of updates. For a parameter
in the observation table, updates is equal to the number of epochs, while for raw scalar
parameters it is equal to size(Obs) × epochs.
In order to be sure that the scales of the parameters matches, one can apply scaling

operators like affine transformation or exponential one:

ŷ′(i,week) = eθ
′
store(i) × eθ

′
color(i) × eθ

′
size(i) ×Θ[group(i),WeekNumber(week)]. (I.23)
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Conclusion

This chapter introduced automatic differentiation to relational programming languages
and thus unlocked Differentiable programming on those specific languages.

After a theoretical presentation of relational algebra, we have demonstrated the crucial
need of machine learning tools in database systems themselves as the existing solutions
do not leverage the relational aspect of the data they work with. Our approach is to
separate the relational and the mathematical aspect of a relational query in order to
differentiate it. To do so we have crafted a dedicated programming language, Adsl. This
has several advantages. First it removes all the language specific issues while implement-
ing the differentiation system. Second, as we are free to design it, we did it in order
to make anything related to differentiation easy. Thus Adsl has two simple properties:
SSA and SA. It makes its differentiation very easy and natural. The SSA property is
pretty common for programming languages but the SA property gives a specific form
to the final gradient and has led to a novel gradient estimator described in Chapter IV.
Finally Adsl’s closeness by differentiation expresses the derivative of a query as another
query. This property lets us express the gradient’s query in the same environment as the
original one: it benefits from the same optimizations before its execution. Moreover it
makes it compatible with any programming language that can be compiled from and to.
If a differentiable framework uses a query at some point, Adsl can return the derivative
query that can be plugged into the creation of the model’s gradient. In order to translate
relational queries into Adsl programs, we have defined the PolyStar and the novel Join
operator named TOTAL JOIN. These two new concepts are key in order to build a strong
theoretical setup. Differentiation relational queries unlocks many possible applications,
especially in order to build white box models. Thus from the practical side, we have com-
piled Adsl from and to Envision, that is a direct implementation of what we have just
described. The solid theoretical work makes his execution very fast and reliable. This has
led to white box models designed by supply chain experts that have outperformed black
box models in daily production at Lokad. We have unlocked automatic differentiation
on relational queries in order to optimize models through gradient descent. Applying
gradient descent on relational data raises many issues that are tackled in the Chapter III.

To sum up, the main insights of this chapter are the following. First machine learn-
ing is wished for and possible in database systems. Second, the gradient of a query is
also a query.
Now that we have a solid and implemented access to the gradient of a query, we present

what we do with, i.e. stochastic gradient descent.
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II. Stochastic gradient descent

The development of Adsl within a relational programming language like Envision serves
the purpose of optimizing white box models using gradient descent. This chapter aims to
provide a comprehensive understanding of Stochastic Gradient Descent (SGD) [97] and
its practical applications in training machine learning models. This framework will fit the
mathematical and relational decomposition of the query and will serve as the theoretical
basis for Chapters III and IV.

Introduction

Gradient descent is a widely used optimization algorithm in machine learning that has
played a significant role in recent advancements in training a variety of models. The
algorithm is efficient, intuitive, and can be extended to different learning tasks through
the use of different loss functions. An alternative version of this algorithm, SGD, performs
gradient descent with an estimator of the full gradient and requires fewer resources. This
feature makes SGD much more scalable than traditional gradient descent, as one of
its versions only requires a small subset of the data to be loaded into memory at a
time. Additionally, the chapter presents a unified perspective on the adaptive optimizers
introduced by [98] and their utilization in the context of SGD. The proposed approach
offers convergence guarantees for non-convex functions, leveraging the unbiasedness of
the estimator.
The organization of this chapter is as follows: firstly, a brief analogy of gradient de-

scent is presented, followed by the proper mathematical framework that supports this
technique. The efficiency of the method is proved in the convex case and convergence
guarantees are obtained under regularity assumptions. In the second part of the chapter,
different approaches to introducing stochasticity in gradient descent are discussed. Fi-
nally we present a selection of highly effective optimizers suitable for performing in the
given context and how they can be unified to give convergence guarantees under other
regularity conditions.

II.1. Gradient descent

II.1.1. Analogy

We present a popular analogy that provides intuition for the mechanism of gradient
descent. Consider a hiker on a mountain who wishes to descend to the valley. However,
due to dense fog, she can only see a distance of one meter around her. As the valley is
situated at a lower altitude than the mountain, she is likely to reach the valley if each
of her steps follows the direction with the steepest descent around her. Although this
method may fail if she ends up in a local minimum such as a mountain lake, assuming
that the mountain topology has no local minima, she will reach the valley. The time
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Figure II.1.: Gradient descent illustration on a representation of an arbitrary function
f ∶ R2 Ð→ R. The parameter update following gradient descent allows the
diminution of the objective function, as depicted by the decrease in the
vertical location of (x, y, f(x, y)). Illustration directly taken from [99].

taken for her to reach the valley will depend on the length of her steps. If the steps are
too small, she will require many steps to reach the valley. Conversely, if the steps are
too big, she may head in the wrong direction as the direction with the steepest descent
changes throughout the mountain.
In this analogy, the location of the hiker corresponds to the model parameters, her alti-

tude represents the objective function, and each step decision represents the optimization
algorithm. A comprehensive representation of gradient descent is thus given in Figure
II.1. It may appear counterintuitive, but certain gradient descent methods do not strictly
adhere to the direction with the steepest descent. This is due to the fact that selecting a
smaller slope locally may be compensated for by repeating it multiple times.
This analogy is useful but now let’s properly introduce gradient descent.

II.1.2. Notations

Let’s consider Fθ the function from Rp to R that we aim to minimize. Our objective is
to find θ⋆, which we assume to exist:

θ⋆ = argmin
θ∈Rp

Fθ.

All the work presented in Chapter I provides an automatic means to access the gradi-
ent of functions computed in relational programming languages. Section I.1.3 presented
automatic differentiation systems on other environments like Pytorch [40] or Julia [39],
thus we can assume that if Fθ is differentiable with respect to θ, i.e., ∇θF exists, we can
access to it. We can introduce gradient descent which is a first-order iterative optimiza-
tion algorithm commonly used to find a local minimum of Fθ. The main concept behind
this widely-used technique is to iteratively move the parameter in the opposite direction
of the gradient ∇θF , which by definition is the direction of the steepest descent of the
objective function.
The iterative step of gradient descent is:

θt+1 = θt − αt∇θF (θt), (II.1)
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αt is the learning rate. Using an appropriate learning rate is key in order to converge
towards a minimum of the target function. The update, i.e. θt+1−θt, is called the stepsize.
In addition to its simplicity in formalization and comprehension, gradient descent pro-

vides convergence guarantees for smooth and convex optimization problems. These guar-
antees are presented in the subsequent section.

II.1.3. Convergence proof in the smooth and convex case

We recall the convergence proof of the gradient descent algorithm in the smooth and
convex case and we follow [100] presentation. For this section, we suppose that Fθ is
smooth and convex.
Fθ is L-smooth means that

∀ θ, θ′; F (θ′) ≤ F (θ) + ⟨∇F (θ); (θ′ − θ)⟩ + L
2
∥θ′ − θ∥2 , (II.2)

first note that the L-smoothness of F gives the uniqueness of θ⋆. In this set up, a constant
learning rate αt = 1

L ∈ R+⋆ gives us convergence properties.

Theorem 2 (gradient descent converges). If Fθ is L-smooth and αt = 1
L , then

F (θt) − F (θ⋆) ≤ 2L
∥θ1 − θ⋆∥2

t
. (II.3)

Proof. F being L-smooth, one can apply II.2 with θ′ = θt+1 and θ = θt:

F (θt+1) ≤ F (θt) + ⟨∇F (θt);
1

L
∇F (θt)⟩ +

L

2
∥ 1
L
∇F (θt)∥

2

.

It allows us to bound the updates of F :

F (θt+1) − F (θt) ≤ −
1

2L
∥∇F (θt)∥2 . (II.4)

One can note ∆t = F (θt+1) − F (θ⋆). Then:

∆t+1 ≤∆t −
1

2L
∥∇F (θt)∥2 . (II.5)

Convexity of F and triangular inequality gives us:

∆t ≤ ⟨∇F (θt); (θt − θ⋆)⟩ ≤ ∥∇F (θt)∥ ∥(θt − θ⋆)∥ ,

which can be rewritten into:

∆2
t

∥(θt − θ⋆)∥2
≤ ∥∇F (θt)∥2 . (II.6)

II.5 and II.6 gives:

∆t+1 ≤∆t −
∆2

t

2L ∥θt − θ⋆∥
.

∥θt − θ⋆∥2 is a decreasing serie:
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∥θt+1 − θ⋆∥2 = ∥θt − θ⋆ −
1

L
∇F (θt)∥

2

= ∥θt − θ⋆∥2 −
2

L
⟨θt − θ⋆;∇F (θt)⟩ +

1

L2
∥∇F (θt)∥2 (L-smoothness)

= ∥θt − θ⋆∥2 −
2

L
⟨θt − θ⋆;∇F (θt) −∇F (θ⋆)⟩ +

1

L2
∥∇F (θt)∥2

≤ ∥θt − θ⋆∥2 −
2

L2
∥∇F (θt)∥2 +

2

L2
∥∇F (θt)∥2 (Co-coercivity)

≤ ∥θt − θ⋆∥2 −
2

L2
∥∇F (θt)∥2 ,

which permits to write:

∆t+1 ≤∆t −
∆2

t

2L ∥θ1 − θ⋆∥
. (II.7)

Multiplying II.7 by −1
∆t+1∆t

gives:

1

2L ∥θ1 − θ⋆∥
∆t

∆t+1
≤ 1

∆t+1
− 1

∆t

(II.8)

With ∆t

∆t+1 ≤ 1 from II.5, summing II.8 inequalities for j ≤ t gives the final result:

F (θt) − F (θ⋆) ≤ 2L
∥θ1 − θ⋆∥2

t
.

The use of the convex setting is advantageous for proving convergence theorems because
it lacks local minima, preventing the gradient descent algorithm from getting stuck. It
should be noted that if the algorithm, as expressed in Equation II.1, reaches a local
minimum where ∇F = 0⃗, it will remain trapped there indefinitely. By making stronger
assumptions about Fθ, faster convergence can be demonstrated, though the details will
not be discussed here.
However, gradient descent is not a universal solution for minimization problems. We

will discuss its main limitations in the following section.

II.1.4. Limitations

Choosing the appropriate learning rate for gradient descent can be challenging due to
several factors that can affect the optimization process. An ill-chosen learning rate can
lead to slow convergence, oscillations, or even divergence of the algorithm. If the learning
rate is too small, the algorithm will take very small steps, leading to slow convergence
and possibly getting stuck in a local minimum. On the other hand, if the learning rate is
too large, the algorithm may overshoot the optimal solution, causing oscillations or even
divergence. It is important to note that the smooth parameter L from Equation II.2 is
not always known.
Moreover gradient descent is not well-suited for discrete optimization problems due

to its reliance on continuous gradients. Firstly, discrete optimization involves finding
the best solution from a finite set of possible discrete choices, such as selecting the best
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combination of discrete variables or making discrete decisions. However, gradient descent
is designed for continuous optimization, where the objective function and variables are
continuous. Then gradient descent cannot handle the discrete nature of the variables,
leading to invalid or nonsensical solutions. Secondly, gradient descent is a local search
algorithm that aims to find the optimal solution by iteratively updating the parameters
based on the local gradient information. However, in discrete optimization, the search
space is often non-convex and contains multiple local optima. Gradient descent may get
stuck in local optima and fail to explore the entire search space. Lastly, this class of
problems often involve a combinatorial explosion of possible solutions. The search space
grows exponentially with the number of discrete variables or the size of the problem. Gra-
dient descent, which relies on calculating gradients and updating parameters iteratively,
becomes computationally infeasible for large-scale discrete optimization problems.
To address discrete optimization problems, specialized optimization algorithms are

used, such as integer programming [101], constraint programming [102] or genetic algo-
rithms [103]. These methods are designed to handle discrete variables, non-differentiable
functions, and explore the discrete search space more effectively than gradient descent.
Finally the main limitation of gradient descent is its computational cost in presence of

a very large dataset. This motivates the following section.

II.2. Stochasticity

In the previous section we have presented the gradient descent algorithm. This is not
very used in practice, SGD is often preferred.

II.2.1. Motivation

In real-world scenarios, the size of the dataset Z can be enormous. For instance, the
CIFAR dataset used as an example consists of 60,000 32x32 color images, which corre-
sponds to approximately 160 MB. This only concerns the data and does not even include
the model. With respect to the Celio dataset discussed in Chapter I, the sales history
comprises over 70 billion observations. Attempting to load full datasets and compute the
exact gradient for a single gradient descent step is impractical due to the memory con-
straints [104]. This is known as the computational burden of the optimization problem.
Furthermore, in complex models like neural networks, it is not always guaranteed that
the optimization landscape is convex or smooth, leading to the possibility of local min-
ima trapping the optimizer. As a result, an alternative approach is necessary to enable
the learning of massive datasets. Rather than computing the exact gradient on the full
dataset, one can use an estimator of the gradient, since the dataset itself can be viewed as
observations of a wider phenomenon, dependent on the measurement span, for instance.
Using an estimator ĝt of the gradient might be an interesting solution [97]:

θt+1 = θt − αtĝt. (II.9)

Let’s consider the minimization problems presented in the first chapter. Our objective
is to minimize the sum of an attribute constructed in the observation table of a PolyStar:

GSUM(loss)(Πloss(Observation)). (II.10)
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It means that the minimization problem can be written as

θ⋆ = argmin
θ∈Rp

Fθ

= argmin
θ∈Rp

∑
X,y∈Z

fθ(X,y)

= argmin
θ∈Rp

∑
i=1...n

fθ(Xi, yi).

Then the estimator of the gradient can be induced by decomposition of the dataset
into batches of observations. Each batch of observation is small in terms of data size,
which makes it possible to estimate it on very large datasets.
SGD is a direct extension of gradient descent that also provides convergence guarantees.

We will discuss some of these guarantees in the following section.

II.2.2. Convergence of SGD

SGD operates based on an estimation of the objective function’s gradient, rather than the
exact gradient itself. It may be unclear how this optimization technique can effectively
minimize a function that it does not have an exact access to. However, several ground-
breaking works have demonstrated convergence guarantees with this gradient estimation,
including [97,98,104–106].
Our objective is to prove the convergence of SGD following the update rule defined in

equation II.9. We assume that we have a random variable χ that draws samples from Z,
denoted as χt. We then define the gradient estimator ĝt using these samples:

ĝt = ∇θt−1fθt−1(χt). (II.11)

We note
F(θ) = Eχ[fθ(χ)]. (II.12)

Theorem 3 (SGD convergence). Assume that the gradient of F exists and is bounded:

∃B > 0,∀θ ∈ Rp ∶ sup
X,y∈Z

∥∇θfθ(X,y)∥2 ≤ B. (II.13)

Assume also that there exists µ > 0 such that F is µ-strictly convex:

∀θ, θ′ ∈ Rp F(θ′) ≥ F(θ) + ⟨∇F(θ); θ′ − θ⟩ + µ
2
∥θ − θ′∥2 . (II.14)

Then θ⋆ = argmin
θ∈Rp

F(θ) exists and is unique and for any ϵ > 0, there exists α ∈ R+⋆

such that
lim sup

t→∞
E[∥θt − θ⋆∥2] ≤ ϵ.

We have chosen proof from [107] for its simplicity.

Proof. First of all, the uniqueness of θ⋆ is guaranteed by the µ-strictly convexity of F .
For notation convenience, let’s note

δt = E[∥θt − θ⋆∥2]
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Then we start by bounding δt+1 in function of δt:

δt+1 = E[∥θt − αtĝt − θ⋆∥2]
= E[∥θt − θ⋆∥2] + α2E[∥ĝt∥2] − 2αE[⟨θt − θ⋆; ĝt⟩]
= δt + α2E[∥ĝt∥2] − 2αE[⟨θt − θ⋆;∇F(θt)⟩] (expectancy on χ)

≤ δt + α2B − 2αE[F(θt) −F(θ⋆) +
µ

2
∥θt − θ⋆∥2] (µ − strongly convex)

≤ δt + α2B − αµE[∥θt − θ⋆∥2] (θ⋆ is the minimum of F )
= (1 − αµ)δt + α2B.

This inequality can be rewritten as:

(δt+1 −
αB

µ
) ≤ (1 − αµ)(δt −

αB

µ
).

Taking the positive part of δ̃t = δt − αB
µ and choosing α such that α ≤ 1

µ :

( ˜δt+1)+ ≤ (1 − αµ)(δ̃t)+.

We can iterate this inequality for k > 1:

( ˜δt+k)+ ≤ (1 − αµ)k(δ̃t)+.

That means that:

lim sup
k→∞

(δ̃k)+ = 0.

Then for any α smaller than 1
µ and smaller than ϵµ

B we obtain

lim sup
t→∞

δt ≤ ϵ,

which concludes the proof.

When the dataset is made of a finite set of observations X,y ∈ Z, a natural χ is a
random uniform draw on these observations. Then F(θ) reduces to the quantity we want
to minimize.
Equation II.9 provides a method for updating the parameters based on the gradient

estimation. However, there are several other approaches, known as optimizers, that can
be used for this update. In the following section, we will introduce the most widely used
optimizers and discuss the convergence guarantees they offer.

II.3. Convergence properties with adaptive optimizers

II.3.1. Optimizers

An optimizer is essentially an algorithm that iteratively adjusts the model’s parameters to
minimize the objective function. It uses the gradient of the objective function with respect
to the model’s parameters to determine the direction of the parameters adjustment, and
the learning rate to determine the magnitude of the adjustment. The learning rate
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controls the step size of the optimizer, and a smaller learning rate results in slower but
more accurate convergence, while a larger learning rate can result in faster convergence
but may risk overshooting the optimal solution.
Different optimizers use different strategies for updating the parameters, such as momentum-

based methods, adaptive learning rate methods, and stochastic gradient methods. The
optimizer choice can have a significant impact on the performance of the model, as dif-
ferent optimizers may converge at different rates and to different local optima.
In the following, we review common optimizers and discuss the circumstances in which

they perform optimally. This review is not exhaustive and the chosen optimizers are
presented in chronological order of their historical development.

Vanilla SGD

Vanilla SGD is the first optimizer and is presented in Equation II.1. The advantage
of the vanilla optimizer for gradient descent is that it is computationally simple and
easy to implement, making it a popular choice for optimizing machine learning models.
Additionally, it works well for many problems, especially those with relatively smooth
loss surfaces. However, there are some disadvantages to the vanilla optimizer. One of the
main issues is that it can converge slowly, especially in cases where the loss surface is not
smooth or has sharp, narrow valleys. In such cases, the optimizer may oscillate around
the minimum or get stuck in local minima. Additionally, the learning rate must be chosen
carefully to balance convergence speed and stability, which can require some trials and
errors. Finally, the vanilla optimizer for gradient descent does not include any adaptive
techniques to adjust the learning rate during training, which can limit its effectiveness
on some problems.

Polyak’s momentum

Polyak’s momentum is a popular modification of the stochastic gradient descent (SGD)
algorithm that was introduced by [108]. The basic idea behind momentum is to add a
fraction of the previous gradient estimate to the current one, which helps smooth out the
direction of updates and accelerate convergence.:

θt+1 = θt − αgt + β(θt − θt−1).

This allows the optimizer to continue moving in the same direction even when the
current gradient changes direction, thereby reducing oscillations and improving stability.
Polyak’s momentum has become a widely used optimization algorithm in deep learning
due to its ability to speed up convergence and improve the robustness of the optimization
process.

Adagrad

Adagrad [109] is an optimization algorithm for gradient-based optimization that adapts
the learning rate for each parameter based on the gradients’ histories. The key idea
behind Adagrad is to scale the learning rate for each parameter based on its historical
gradient variance. This means that parameters that have large gradients will get a smaller
learning rate and parameters that have small gradients will get a larger learning rate, thus
allowing the optimizer to converge quickly while avoiding the problem of overshooting
the minimum.
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The algorithm maintains a per-parameter learning rate, which is updated based on the
sum of the squares of the past gradients for that parameter. The update rule for Adagrad
is as follows:

θt+1 = θt −
α

√
ϵ + ∑

k<t
g2k

gt.

Adagrad’s default hyperparameters are α = 0.001 and ϵ = 10−8. One advantage of Ada-
grad is that it requires minimal hyperparameter tuning, as the learning rate is adaptively
scaled based on the historical gradients. However, one limitation of Adagrad is that the
pseudo learning rate α√

ϵ+∑
k<t

g2
k

continues to decrease as the sum of squares of the past

gradients grows larger, which can cause the pseudo learning rate to become too small,
making it difficult for the optimizer to escape from local minima.

Adam

Adam was introduced by [110]. One of the main contributions of this optimizer is the
introduction of refined momentum mt and rt estimation of the gradient. It relies on the
momentum by using a sort of moving average of the gradient instead of the computed
gradient, similar to the Polyak’s momentum.

mt+1 = β1mt + (1 − β1)gt
rt+1 = β2rt + (1 − β2)g2t
m̂t+1 =

mt+1
1 − βt+1

1

r̂t+1 =
rt+1

1 − βt+1
2

θt+1 = θt − α
m̂t+1√
ˆrt+1 + ϵ

.

Adam’s default hyperparameters are α = 0.001, β1 = 0.9, β2 = 0.999 and ϵ = 10−8.
One of the interesting properties of Adam is that its stepsizes are approximately

bounded by the learning rate. Indeed, in the default case with (1− β1) =
√
1 − β2, we get

m̂t+1√
v̂t+1
< m̂t+1√

ϵ+v̂t+1
< 1.

For big gradients, as soon as β1 < β2, the stepsize is smaller than the learning rate, as
explained in II.15:

lim
gt→∞

∣ m̂t+1 ∣√
ϵ + v̂t+1

= 1 − β1
1 − βt+1

1

∣ gt ∣ ×

¿
ÁÁÀ 1 − βt+1

2

(1 − β2)g2t
= 1 − β1√

1 − β2
1 − βt+1

1√
1 − βt+1

2

< 1. (II.15)

This property makes Adam powerful regardless of the amplitude of the gradient. One
advantage of Adam over Adagrad is that Adam uses both momentum and adaptive
learning rates. The momentum helps the optimizer to continue moving in the same
direction even when the gradients have become small or noisy. The adaptive learning
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Figure II.2.: The Three-hump camel-back function was minimized using 4 optimizers,
each demonstrating different rates of objective function reduction. Default
parameters were employed for each optimizer, although this did not provide
an advantage for the Adagrad and Adam optimizer due to their small learn-
ing rates of 0.01.

rates help the optimizer to automatically adjust the learning rate for each parameter
based on the historical gradients. This combination of momentum and adaptive learning
rates makes Adam more efficient in finding the minimum of the loss function compared to
Adagrad. Additionally, Adam is less sensitive to hyperparameters, such as the learning
rate, compared to Adagrad.
Due to these numerous advantages and after extensive benchmarking, Lokad has made

the decision to adopt Adam as the default optimizer for all production optimization tasks.
From an industrial standpoint, it is logical to limit the number of choices available to the
domain expert, who is already in charge of the model design. Note that in production,
apart from the learning rate, no hyperparameters can be modified by the expert.

Difference between optimizers

To highlight the difference between these optimizers, we have tried to minimize the Three-
hump camel-back thc function:

thc(x, y) = 2x2 − 1.05x4 + x
6

6
+ xy + y2.

The global minimum of this function can easily be proven as thc(0,0). This function is

also strictly convex as ∂2thc
∂x2 > 0 < ∂2thc

∂y2 . Consequently its minimization through gradient
descent is easy and all the optimizers perform this task well. However we note different
behavior in Figure II.2. In the case this strictly convex function, momentum-based op-
timizers such as Adagrad and Adam lose their primary advantage. There are no exotic
gradient points that need to be mitigated by the gradient descent general trend.
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II.3.2. Convergence generalization

In the following we formalize the two possible stochasticities, from the observation or
from the function, into a generic setting. This setting is directly inspired from [98].
Our goal is still to minimize the function F . We assume there exists a random function

f ∶ Rp → R such that its gradient estimates without any bias the true gradient of F :

∀ θ ∈ Rp; E[∇f(θ)] = ∇F (θ),

we also assume that we have access to an oracle providing i.i.d. samples (ft)t∈N⋆ . We de-
note Et−1[.] the conditional expectation knowing f1, . . . , ft−1. The origin of these samples
is inconsequential, whether they come from observation-related stochasticity, function-
related stochasticity, or any other source as proposed in future Section II.4.1.
In this setting we do not consider the full gradient of F as an input but we only access

a series of realizations of an unbiased estimator of it. As we did in the smooth and convex
case, we need to make three assumptions on the function F we aim to minimize and on
the samples.
First, F is bounded below by B:

∀θ ∈ Rp; F (θ) ≥ B, (II.16)

this assumption makes sure that F can be minimized.
Second, the l∞-norm of the gradient estimator is uniformly almost surely bounded, i.e

there exists M ≥ 0 such that:

∀θ ∈ Rp; ∥∇f(θ)∥∞ ≤M. (II.17)

Third, the true gradient is L-Liptchitz-continuous with respect to the l2-norm:

∀ θ, θ′; ∥∇F (θ) −∇F (θ′)∥2 ≤ L ∥θ − θ′∥2 . (II.18)

Under these three assumptions, we can obtain convergence properties for stochastic
gradient descent. To achieve this, we do not utilize the basic parameter update from
equation II.1, but instead employ the optimizer from Equation II.19 introduced by [98],
which is a generalization of adaptive optimizers into a single one.

mt+1 = β1mt + gt
rt+1 = β2rt + g2t
θt+1 = θt − αt

mt+1√
rt+1 + ϵ

. (II.19)

Although the following holds for different values of β, we use this optimizer with β1 = 0
and β2 = 1 henceforth for the simplification of the proof. With these parameters, the
optimizer reduces to Adagrad. If we choose the default value of Adagrad, this version is
very close from the original one, especially after a few iterations.
The following proves the convergence of stochastic gradient descent in specific cases.

Note that an uncareful hyperparameters adjustments will lead to non convergence even
with this optimizer [111].
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Theorem 4 (Stochastic gradient descent converges). For any T ∈ N⋆, with τ a random
index that uniformly draws into [∣ 0..T [ and R =M +

√
ϵ, given the previous assumptions:

E[∥∇F (θτ)∥2] ≤ 2R
F (θ0) − F ⋆

αT
+ 1√

T
(4pR2 + αpRL) ln(1 + TR

2

ϵ
).

Notation To make the following proofs more readable, we note G = ∇F (θt−1); g =
∇ft(θt−1), v = vt, ṽ = ṽt, vϵ = v + ϵ and ṽϵ = ṽ + ϵ. By definition:

Et−1[g2] ≤ ṽϵ, (II.20)

and
g2 ≤ vϵ. (II.21)

Lemma 1 (adaptive updates approximately follow a descent direction). For all t ∈ N⋆

Et−1[
Gg
√
vϵ
] ≥ G2

√
ṽϵ
− 2REt−1[

g2

vϵ
]. (II.22)

Proof. By linearity

Et−1[
Gg
√
vϵ
] = Et−1[

Gg√
ṽϵ
] +Et−1[Gg(

1
√
vϵ
− 1√

ṽϵ
)]. (II.23)

Knowing (fi)i≤t−1 does not give any information on G and g so the first term gives:

Et−1[
Gg√
ṽϵ
] = G2

√
ṽϵ
.

For the second term:

Gg( 1
√
vϵ
− 1√

ṽϵ
) = Gg

√
ṽϵ −
√
vϵ√

ṽϵ
√
vϵ

= Gg ṽ − v
√
ṽϵ
√
vϵ(
√
ṽϵ +
√
vϵ)

= Gg Et−1[g2] − g2√
ṽϵ
√
vϵ(
√
ṽϵ +
√
vϵ)

∣ Gg( 1
√
vϵ
− 1√

ṽϵ
) ∣ ≤∣ Gg ∣ Et−1[g2]√

vϵ(ṽϵ)
+ ∣ Gg ∣ g2√

ṽϵ(vϵ)
= A1 +A2.

For all a, b ∈ R, ha,b(x) = a2

2 x
2 − abx + b2

2 is positive (∆ = 0) on R. Thus for all x > 0:

ab ≤ a
2

2
x + b2

2x
, (II.24)

so let’s apply Inequality II.24 on A1 with

x =
√
ṽϵ
2

;a = ∣ G ∣√
ṽϵ
; b = ∣ g ∣ Et−1[g2]√

vϵṽϵ
.

we get:
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A1 ≤
G2

4
√
ṽϵ
+ g

2Et−1[g2]2

vϵṽ
3/2
ϵ

.

Thanks to II.20:

Et−1[A1] ≤
G2

4
√
ṽϵ
+ Et−1[g2]√

ṽϵ
Et−1[

g2

vϵ
]

≤ G2

4
√
ṽϵ
+REt−1[

g2

vϵ
].

Now lets apply Inequality II.24 on A2 with

x =
√
ṽϵ

2Et−1[g2]
;a = ∣ Gg ∣√

ṽϵ
; b = g

2

vϵ
,

we get:

A2 ≤
G2

4
√
ṽϵ

g2

Et−1[g2]
+ Et−1[g2]√

ṽϵ

g4

v2ϵ
.

Thanks to II.20:

Et−1[A2] ≤
G2

4
√
ṽϵ
+ Et−1[g2]√

ṽϵ
Et−1[

g2

vϵ
]

≤ G2

4
√
ṽϵ
+REt−1[

g2

vϵ
].

Summing the inequalities gives:

Et−1[∣ Gg(
1
√
vϵ
− 1√

ṽϵ
) ∣] ≤ Et−1[∣ A1 ∣ + ∣ A1 ∣] ≤

G2

2
√
ṽϵ
+ 2REt−1[

g2

vϵ
], (II.25)

II.23 and II.25 can thus complete the lemma proof:

G2

2
√
ṽϵ
≤ Et−1[

Gg
√
vϵ
] + 2REt−1[

g2

vϵ
].

Proof. (of Theorem 2)
Lets start with the smoothness of F between θt+1 and θt:

F (θt) ≤ F (θt−1) − α⟨G.
g
√
vϵ
⟩ + α2L

2
∥ g
√
vϵ
∥
2

2

, (II.26)

with the conditional expectation with respect to the t previous samples:

Et−1[F (θt] ≤ F (θt−1) − αEt−1[⟨G.
g
√
vϵ
⟩] + α2L

2
Et−1[∥

g
√
vϵ
∥
2

2

]. (II.27)
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We have that
√
vϵ ≤ R

√
t which gives:

Et−1[F (θt] ≤ F (θt−1) −
α

2R
√
t
∥G∥22 + (2αR + α

2L

2
)Et−1[∥

g
√
vϵ
∥
2

2

], (II.28)

this inequality holds for any 0 ≤ t ≤ T , thus we can sum them and obtain:

E[F (θT ]) ≤ F (θ0) −
α

2R
√
T

T−1
∑
t=0

E[∥∇F (θt)22∥] + (2αR + α
2L

2
)
T−1
∑
t=0

E[∥ g
√
vϵ
∥
2

2

]. (II.29)

As ln(x) ≤ x for x ∈ R+⋆ , for a, b ∈ R+⋆, we have:

a

b
≤ ln(b) − ln(a), (II.30)

we can apply this inequality with a = ∇ft(θt−1)2 and b = ϵ + vt:

∇ft(θt−1)2
ϵ + vt

≤ ln(ϵ + vt) − ln(ϵ + vt −∇ft(θt−1)2)

≤ ln(ϵ + vt) − ln(ϵ + vt−1),

summing it forms a telescoping series:

T

∑
t=0

∇ft(θt−1)2
ϵ + vt

≤ ln(1 + vT
ϵ
). (II.31)

Using it in Equation II.29 gives:

E[F (θT ]) ≤ F (θ0) −
α

2R
√
T

T−1
∑
t=0

E[∥∇F (θt)22∥] + (2αR + α
2L

2
)p ln(1 + TR

2

ϵ
). (II.32)

Rearranging the terms and bounding below F (θ) by F ⋆ thanks to the first assumption
concludes the proof.

It should be noted that the theoretical application of these concepts is based on func-
tions that satisfy the three assumptions. In practice, however, the models employed may
not always fulfill these assumptions, as illustrated by a concrete example in Section III.3.3.
In some cases, the model itself might not even be differentiable. For instance, rectified
linear units (ReLU) [112] are frequently applied to neural network layers and are defined
as ReLu(x) =max(x,0). Fortunately, these conditions are sufficient for convergence but
not strictly necessary.
The validity of Theorem 4 relies on the assumption of the existence of a random func-

tion that provides an unbiased estimation of the true gradient. Building upon the theo-
retical guarantees established with this framework, we will now introduce two practical
techniques for obtaining such a function in practice.
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II.4. Stochasticity generalization and applications

II.4.1. Alternative stochasticity origin

Estimating the gradient of the mathematical function using the entire dataset requires
access to the full set of data Z and the corresponding mathematical function gradient ∇f .
To introduce stochasticity in the gradient estimation process and reduce computational
resources needed for parameter updates, a common approach is to divide the dataset
into smaller batches. Alternatively, a lighter version of the mathematical function with
reduced computational cost can also achieve the same objective.
In the following sections, we will discuss these two techniques for estimating the gra-

dient and their suitability for use with the selected optimizer.

Observation

Given that the objective function is expressed as a sum over an observation table in
Equation II.10, a natural way to estimate the gradient would be to compute it on a
randomly selected subset S of fixed size from the observation table.

ĝS =
∣ Z ∣
∣ S ∣∑z∈S

∇θf(z),

the size of S is called the batch size.
Thanks to the linearity of the gradient, such estimator is unbiased:

E[ĝS] =
∣ Z ∣
∣ S ∣

E[∑
z∈S
∇θf(z)]

= ∣ Z ∣
∣ S ∣∑z∈S

E[∇θf(z)]

= ∣ Z ∣
∣ S ∣
∣ S ∣
∣ Z ∣

E[∇θF ]

= E[∇θF ].

Reducing the number of observations utilized in gradient computation is the most
prevalent technique for decreasing the computational cost. This approach also enables
handling streaming data, where the full set of observations is not available simultaneously.
This method relies on dividing the observations into batches. Additionally, one can
consider modifying the function ∇θf to enable faster computations.

Function

One can define the linearized computational graph of fθ, in which the nodes represent
intermediate variables and the edges represent the mathematical operations. It is a spe-
cific representation of a computation graph that orders the nodes in such a way that each
node’s input operands appear earlier in the sequence than the node itself. This lineariza-
tion ensures that the computation graph can be traversed and executed sequentially,
simplifying the process of evaluating the function and its derivatives.
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Definition 9 (LCG). A linearized computational graph (LCG) is a directed acyclic graph
G = (V,E), where V is the set of nodes representing variables, operations, and functions,
and E is the set of directed edges representing the dependencies between the nodes. The
linearization of G is a sequence of nodes L = (z1, z2, ..., zn), where n is the number of
nodes in V , and for each edge (zi, zj) ∈ E, i < j. This linear ordering ensures that all
dependencies for a node are satisfied before the node itself is processed.

In a LCG, each operation depends only on the output of the previous operation. This
simplification allows for efficient calculations, as the operations can be computed one
after the other, without the need to store all the intermediate values.
Our objective is to compute the derivative of the output node with respect to the input

parameters; this can be written as a sum over all paths in LCG. It has been explained
by [113] as the decomposition of the gradient on the contribution of the LCG paths from
the parameter θ to the output node z. This is depicted in Figure II.3 and Equation II.33
with fθ the function to minimize with respect to θ. .
.
.

.

θ

z1

z2 z3 z4

z5 z6

z

Figure II.3.: Example of the LCG of
an objective function fθ
from the parameter θ to
the output node z.

.

.

.

∇θf = ∑
θÐ→z

Π
zkÐ→zl

∂zl
∂zk

. (II.33)

.

.

.
zk Ð→ zl represents a directed edge
connecting two nodes, and z is the
output node that represents fθ. The
total gradient is the sum of all the
path contributions.

.

.

Thanks to this formula, any gradient can be written as a sum with this decomposition.
One can draw random terms in this sum, which is equivalent to drawing random paths
in the LCG. With the uniform distribution on the sum terms, this estimator is unbiased.
We give an illustration of this technique on the function f2 in Figure II.4.
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Figure II.4.: LCG of f2(x, y) = y2ex cosx.
The dashed lines represent
backpropagation.
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Remark 5. Although LCGs and PolyStars share the characteristic of being graphs, it
is important to note that they operate on different entities. LCGs are concerned with
mathematical functions and their operations, whereas PolyStars focus on tables that store
data and capture relationships between them. It is crucial to avoid confusion between
these two concepts.

With this approach, the stochasticity on the gradient does not come from the data
which have been split into batches. The stochasticity comes from the gradient code
itself and also reduces the needed resource as all the paths do not need to be computed
anymore. This approach has been introduced by [114] and is generalized in Chapter IV.
Following the introduction of the two methods for obtaining a gradient estimator, we

will apply them to the forecasting model presented in Equation I.2 in the first chapter.
This will allow us to investigate their applicability in this specific case.

II.4.2. Gradient stochasticity applied on relational data and PolyStar

Firstly, we develop how the stochasticity obtained from the decomposition of the ob-
servations into batches applies on provided examples. Upon introducing the PolyStar
in Definition 6, we highlighted a special table referred to as the observation table. All
other tables involved in the relation query are determined by their relationship with the
observation table. By doing this, we can apply SGD by partitioning the dataset using
the rows of the observation table.
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Figure II.5.: Data loading from the Celio dataset with model from Equation I.2. For
each line of the Items table, one can access the corresponding line of the
upstreams tables (Store, Color, Size, Group). The Full tables WN and Week
are fully loaded, while the upstream-cross table GroupWN and observation-
cross ItemsWeek are partly loaded.

The full data pertaining to a row of the observation table is explicitly defined through
the PolyStar. To demonstrate this, we provide an example derived from the Celio model
presented in Equation I.2, utilizing the same tables as the PolyStar defined in Figure
I.23. In this example, Store, Color, Size and Group are the primary keys of the tables
with the same name, while they are foreign keys of the Items table. Such relationships
allow us to define a TOTAL JOIN between these tables and load the minimum required
data to compute the loss and the gradient at each observation from the Items table.
A suitable framework implementation enables us to load only the minimal required

data for each observation, as represented by the selected lines of Figure II.5. By doing
so, the execution of SGD is accelerated, as data handling consumes a non-negligible
portion of computing resources, as detailed in Section I.1.3. This perspective emphasizes
the necessity of introducing a differential layer in relational programming languages, as
accomplished in Chapter I.
Secondly, regarding the function stochasticity of the Celio model, the formal represen-

tation of the model under a LCG is given in Figure II.6. One remarks that there is one
and only one path from each parameter to the final loss. Consequently the presented
gradient decomposition as a sum does not apply in that case.
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ŷ

y

E

E2

loss

Figure II.6.: LCG of the Celio model presented in Equation I.2. It is an alternative
representation of the Adsl statements of Figure I.4. The parameters nodes
are θstore, θcolor, θsize and ΘGWN whereas loss is the output node.

Conclusion

In conclusion, this chapter aimed to provide a comprehensive understanding of SGD and
its practical applications in training machine learning models. We have discussed the
algorithm’s efficiency and scalability, as well as its relationship with traditional gradient
descent. We digged into the stochasticity aspect of this technique and proposed two
different ways to obtain an estimator of the true gradient, one based on the observation
the other on the function itself.
The chapter also presented a unified view of adaptive optimizers and their applica-

tions to SGD, offering convergence guarantees for non-convex functions based on the
unbiasedness of the estimator.
We have explored the mathematical framework supporting gradient descent, its ef-

ficiency in the convex case, and convergence guarantees under regularity assumptions.
Additionally, we delved into various approaches to introducing stochasticity in gradient
descent and presented some of the best optimizers for this context, along with unifying
them to provide convergence guarantees under other regularity conditions.
This chapter serves as a solid theoretical foundation for the subsequent chapters, which

introduce novel gradient estimators and further explore the practical applications of SGD.
This chapter will remain crucial for understanding and implementing efficient optimiza-
tion algorithms in a variety of contexts, as in the following chapters.
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III. Gradient estimator for categorical
features

The work presented in this chapter is based on [115].

Introduction

Tabular data represent a considerable amount of modern data especially in the healthcare
and industrial sectors. Machine Learning has been applied to those tabular data for
decades for different tasks such as regression or classification. Boosting methods [116,117]
are widely spread on these data and are still state of the art. After outstanding results
on image, speech recognition or text, some attempts to apply deep learning models on
tabular data have been published recently but with a limited impact on the state of the
art as presented by [7]. Some deep learning approaches [118–120] have tried to adapt
their architecture to the specificity of tabular data but none did succeed in overtaking
classical machine learning models such as gradient-boosted tree ensembles [121].
One of the possible explanations is that deep learning excels on homogeneous data

where embeddings can be learned [122, 123] via SGD presented in Chapter II to up-
date their parameters by utilizing the underlying nature of the data like 2D spatial pixel
neighborhood. In contrast, there is no such general underlying structure on tabular data.
Domain transfer is not applicable in tabular data problems due to the absence of a com-
mon underlying structure. Unlike image or language processing, where knowledge and
data from one problem can be leveraged to learn another problem with fewer annotated
data, tabular data lacks this transferability. Each tabular problem possesses its unique
structure and data characteristics, rendering the generalization of learnings across differ-
ent problems impractical.
As tabular data often contains categorical data which are not numerical, the inputs

of the model consists in the encoding of data. When the categorical data cardinality is
limited, one-hot encoding is a good solution. Beyond its simplicity, it creates category-
related parameters that are key for model explainability. In this encoding, only one
feature is set to 1 (indicating the presence of the corresponding category), while all other
features are set to 0. During the model optimization through gradient descent, the gra-
dient is only present for the active feature, and all other features have zero gradient.
The issue with this is that a zero gradient can halt the optimization process, as the
optimizer updates all the parameters, including the ones corresponding to the inactive
features. Considering the booleans 0 and 1 as numerical data by the optimization algo-
rithm can be seen as improper usage, leading to potential negative consequences. This
misuse deviates from their intended representation as logical values, and it can impact
the optimization process in undesirable ways. This might explain the underperforming
results of deep learning models on categorical data. This observation applies also on non
deep models whose training rely on gradient descent. In this chapter we investigate this
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issue by directing our attention towards the categorical aspect of the data, which is the
root cause of the problem, rather than model architectures.
Our main contributions are the following. First, we propose a modification of the

standard training loss on categorical data with a related unbiased estimator. Second, we
show that this new gradient estimator outperforms standard ones on different datasets.
Third, we applied this technique to an in-production model using a private dataset that
we are releasing as open source for this purpose. This dataset is substantial, with only a
few publicly available datasets in the supply chain domain.
The chapter is organized as follows. After an overview of the recent works on tabular

data we point out the issue of applying modern SGD on one-hot-encoded categorical
data. Then we propose a novel gradient estimator and show that it is unbiased for
a relevant loss on categorical data. We conducted several experiments on public and
private datasets that demonstrate the superiority of our proposed gradient estimator
over the classical gradient estimator. The chapter ends by a proposal on categorical
model initialization when their underlying structure is multiplicative, which is based on
singular value decomposition.

III.1. Learning with categorical data

III.1.1. Related works

As described in [7, 121], tabular data exhibit heterogeneity, characterized by high vari-
ability of data types and formats, in their underlying structure, unlike images. They
involve categorical input attributes and have a strong structure that is unique to each
tabular dataset. Modifying a categorical attribute in the input may lead to a complete
change in the meaning of the corresponding data, whereas changing a pixel in an image
does not fundamentally alter the image. This data kind distinction can lead to differ-
ent results for the same deep learning architectures, as shown in the case of adversarial
learning [124]. Even for simpler tasks such as binary or multiclass classification and
regression, deep learning did not yet surpass tree models on tabular data as presented
in [121, 125]. Tabular data is depicted by [6] as the last “unconquered castle” of deep
learning and multiple works assess the crucial need of further development in this direc-
tion [126]. This holds even though various architectures such as MLP [127], ResNet [128],
Transformer [25], NET-DNF [129] . . . have been applied to them, as soon as the dataset
is actually categorical, i.e. it has mainly nominal attributes [130].
In the literature, one can split the architectures into two categories: the raw deep

learning models and the adapted deep learning models. The first rely on some known
deep learning models directly applied on tabular data, without any modification of their
architecture. One example is the work presented in [131], which attempts to transform
the heterogeneous nature of tabular data into a homogeneous numerical representation,
in order to apply successful deep learning methods to this type of data. The second
one adapts deep learning architectures in order to better fit the tabular data specificity
[118,132,133].
All these attempts did not outperform the standards models such as XGBoost from

[116] or CatBoost from [117] which are still the state-of-the-art in this domain [121].
The evaluation is performed on the Adult Census Income (ACI) dataset [134], which is
frequently utilized to showcase the handling of categorical data. In deep learning, each
observation is represented as a fixed-size feature vector, where each feature is assumed to
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provide information about the observation. When using one-hot encoding for categorical
data, a vector representation is introduced that contains undefined components, which
is inherently challenging for deep learning approaches. Indeed in deep learning architec-
tures, all parameters are typically updated at every iteration except through the use of
methods such as Dropout [135] or LayerOut [136] that are general learning tricks non
specific to any kind of data. This assumption may not hold true for categorical data,
leading to potential inaccuracies in the training process.
Hence, there is a requirement for the development of novel approaches that can better

account for the inherent characteristics of categorical data and are better equipped to
handle the characteristics associated with this type of data. We now shift our focus
to the exploration of categorical models and their encoding techniques. These models
specifically address the unique challenges posed by categorical attributes in tabular data.

III.1.2. Categorical models and one-hot-encoding

Id Cat Discount (%) Sales

001 pants 20 7
002 shirt 10 3
003 shirt 15 2
. . . . . . . . . . . .
00n shirt 20 8

Table III.1.: Categorical data.

Deep learning methods are designed to work well with numerical data, such as arrays
of continuous values, because they are built on matrix multiplication or convolution that
are well-defined for numerical data. Categorical data, on the other hand, refers to data
that can take on a limited number of discrete values, and there is no existing ordering of
these values. Let us denote categorical models the set of models that accept categorical
attributes by design and are numerical, i.e. their parameters can be updated through
gradient descent. By categorical attributes, we denote an attribute whose possible values
belongs to an alphabet of ns symbols {s1,⋯, sns}. In Table III.1, Cat is the only cat-
egorical attribute, while pants and shirt are the symbols, and forms the Cat alphabet.
We stress that the categorical aspect applies to the nature of the input attributes: a
categorical model can be used for regression and predict a numerical variable. In that
sense regular neural networks are not categorical models as they need numerical inputs.
Some specific deep models correspond to this definition as wide models described in [137].
Wide model from [137] consists of two main components: a wide component and a deep
component. The wide component captures the memorization aspect by using a linear
model that incorporates explicit feature interactions. It allows the model to learn and
remember specific feature combinations that have been observed in the training data.
This component is beneficial for capturing low-frequency, highly specific patterns. On
the other hand, the deep component focuses on generalization by using a deep neural
network. It learns complex and abstract representations of the input features, enabling
the model to capture high-level interactions and dependencies in the data. The deep com-
ponent is particularly effective at capturing latent features and non-linear relationships
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between the features.
The relational linear regression introduced in Section I.5.3 is a categorical model. Let

us apply this categorical model to the inputs presented in Table III.1, with the goal of
predicting sales based on the discount and the category of the item. This application is
visualized in the graphical representation shown in Figures III.1 and III.2.

.
.
.
.

ŷ(cat, x) = acat × x + b. (III.1)
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Figure III.1.: Relational linear regression.
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ŷ

Figure III.2.: Relational linear regression accessing parameters. The slope parameters are
not concerned by every observation: parameter apants is used only for the
pants data.

In this application, the parameter acat has a value for each possible category of Cat,
and we aim to find the best ones, with the appropriate intercept, in order to build a good
predictive model. One of the primary methods to accomplish that is gradient descent.
Partly due to the very large amount of data often encountered in practice, stochastic
gradient descent is used. To apply SGD on categorical models, the categorical data has
to be encoded into numerical features. No universally good method of encoding exists and
encoding choice should always rely on data (alphabet cardinality, relationships between
them . . . ). In the following we will focus on one-hot-encoding like [7] because it is precisely
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what categorical models do. One-hot-encoding a categorical variable with cardinality n
is performed by creating n binary vectors for each occurrence of the symbol. If there are
few symbols, there are only a few newly created columns. For example, on data stored
in Table III.1, one-hot-encoding the attribute Cat creates the features ispants and isshirt.
In high-stakes contexts such as disease diagnostics, interpretability of the model is

fundamental [12,138]. In such scenarios, the human expert is expected to make the final
decision based on the explainability of the model’s results. Tree-based models are known
for their interpretability and have been used to interpret deep learning models [139]. In
this direction, using one-hot-encoding is crucial. Having parameters directly related to
the application semantic by giving access to their relation with the input symbols is a
requirement for the design of white-box models. In the illustrated example, the variable
apants holds significant meaning, namely the degree of sensitivity of sales in the pants
category to the proposed discount. Parameter values not only serve model prediction
quality, they are also interpretable. On Model III.1, apants > ashirt means that the pants
sales better react to the discount than the shirt ones. Not only is the prediction of the
model explainable, but the trained model itself conveys meaning because the parameters
have their own semantics. It also maintains the structure of the data: it does not impose
any arbitrary ordering on the nominal categories (no intrinsic order).
When dealing with low cardinality attributes, one-hot-encoding is a suitable approach

to turn them into numerical values. However, if this approach is used for high cardinality
attributes, the curse of dimensionality may arise, as explained in [140]. In such cases,
alternative encoding methods should be considered. The leave-one-out encoding method
transforms a categorical attribute into a numerical feature, offering several benefits such
as avoiding the curse of dimensionality. However, this approach does not result in inter-
pretable parameters. For the purposes of this study, we will exclude such high-cardinality
categorical attributes, which are not common in domains such as health or supply chain.
We also exclude any attribute that has a native ordinal encoding, like size attribute with
possible values { small ; medium ; large}.
Applying SGD on categorical models raises an issue as common gradient update tech-

niques are not designed for one-hot encoded categorical features: not every symbol of a
categorical attribute is present in every observation of a dataset while regular numerical
models assume that every feature is present on every observation. Thus we propose an
updated version of gradient estimation used to update categorical parameters. An im-
portant characteristic of the approach is its consideration of the categorical nature of the
model features.

III.1.3. One-hot-encoding notations

We consider the supervised learning set up with a given set of training labeled data

Z = {zi = (Ci; yi); i = 1 . . . n}, with the attribute vectors Ci ∈
C×
c=1
Ac (cartesian product)

where each Ac is an alphabet, i.e. a finite set of ∣ Ac ∣ symbols. Thanks to one-hot
encoding, one can turn the attribute vectors Ci into boolean features Xi ∈ {false; true}m

where m =
C

∑
c=1
∣ Ac ∣. Let’s define an arbitrary order on the (disjoint) union of all the

alphabets: {sk}k≤m = ⊔
c
Ac. Then the boolean vectors Xi are defined as:

∀i ≤ n ∀k ≤m Xk
i = true⇔Cc

i = sk. (III.2)
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(b) Notations applied to relational linear re-
gression

Figure III.3.: One-hot encoding for categorical models notations. The parameter θ is not
entirely dependent on each observation. On the left figure, if x3 is false on
an observation, then θ5 and θ6 are not concerned by this observation. On
the right figure, the intercept is shared among all the observations, resulting
in the relative coordinate in the boolean vector being assigned a value of
true. The arrows serve to summarize the interpretability of the model.

This one-hot encoding is utilized to establish a correspondence with the model param-
eters. Each parameter of the categorical model is uniquely associated with a specific
coordinate of the boolean vector.We aim to find the best parameter θ⋆ ∈ Rp (p ≥ m) to
minimize the loss Fθ on the whole dataset:

.

f ∶ Rp ×Z Ð→ R
θ, (C, y)Ð→ fθ(C, y)

θ⋆ = argmin
θ∈Rp

Fθ = argmin
θ∈Rp

∑
C,y∈Z

fθ(C, y)

= argmin
θ∈Rp

∑
i=1...n

fθ(Ci, yi).

Figures III.3 illustrate this formal definition. In Figure III.3a, {θj}j=1..6 are related to
the first attribute c1. On relational linear regression III.1, such notations give Figure
III.3b where the slope is shared among the category while the intercept is shared by all
the observations.
The variables Xk

i can be mistakenly abusively as numerical inputs, such as assigning
them values of 0 or 1, when feeding them into a machine learning algorithm. This
constitutes a misuse when the algorithm specifically expects continuous numerical values
as input.

III.1.4. Gradient descent issues with categorical features

In classical SGD, instead of computing the complete gradient on all observations, the
observations are divided into batches and the gradient is estimated batch wise on them:
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∇̂θF = gθ = ∑
obs∈batch

∇θfobs (III.3)

Regarding categorical models and one-hot-encoding, we stress that categorical parame-
ters are not equally concerned by the batch, especially when the batch is made of a single
observation. For example in Model III.1 apants is only used on observations that concern
a pants product. By construction via one-hot-encoding, each observation concerns one
and only one symbol for each categorical attribute. It is rational to solely update the
parameters of the concerned symbol, whereas Equation III.3 computes all the gradient
components. In this example, the gradient estimation reduces to:

gapants = ∑
obs∈batch

cat(obs)=pants

∇apantsfobs. (III.4)

What would be the parameter’s gradient of a symbol that is not present at all in the
dataset? What would be the gradient of ahat in Model III.1 with no hat products in the
batch? The set {obs ∈ batch∣cat(obs) = pants} from Equation III.4 might be empty. In this
case, the parameters related to the pants symbol are not concerned by the batch and an
undefined gradient is not equivalent to a zero-gradient. Thanks to one-hot-encoding, we
have prior information about the gradient: if we encounter an observation that does not
involve the symbol sk, we know with certainty that the gradient of its related parameters
does not exist whereas it is numerically zero in standard implementations of SGD. This
numerically zero gradient does not convey any information and it should not be used
for parameter updates. This atomic property of categorical attributes is completely
ignored when using standard SGD approaches. Notice that this problem occurs when
an optimizer with momentum is used, where a zero gradient differs in its implications
from a non-existent gradient. In this case the structural zeros of categorical data are
broadcast among successive batches, which may even amplify the bias of the estimation
of the gradient.

acat = apants×ispants + ashirt × isshirt (III.5)

∂acat
∂apants

∣cat=shirt= ∅ ;
∂acat
∂ashirt

∣cat=pants= ∅.

This issue especially concerns under-represented symbols and small batches. The smaller
the cardinality of the symbols and the batch size, the higher the likelihood of the symbol
not being included in the batch. When a symbol is not present in the batch, we state
that its related parameters should not be updated. As a conclusion, the encoding of
categorical data should not be part of the gradient-exposed portion of the model and
should not infer on the model’s parameters updates, as highlighted in Equation III.5.
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III.2. Gradient estimator for categorical data

III.2.1. GCE definition

The problem with SGD on one-hot-encoded categorical data arises from the updating
of all parameters at each iteration. To address this issue, we propose a new approach
that combines a modification of the training loss with a novel gradient estimator. This
gradient estimator has been specifically designed to handle categorical data. By com-
bining these two elements, the solution provides a more effective and efficient way of
training models on categorical data. The experimentation results show the benefits of
this new approach, which has the potential to significantly improve the performance of
gradient-based machine learning models on categorical data. Let’s consider a given batch.
All the following is based on the observation that if {symbol(obs) = sk/obs ∈ batch} is
empty, parameters related to the sk symbol should not impact the parameters update
in any way. Indeed an undefined gradient is not a zero-gradient. The proposed gradient
estimator thus makes the difference between a zero gradient and an undefined gradient.
Then one needs to count each symbol occurrence and to apply the unbiased gradient
estimator. Therefore, one needs to divide the accumulated gradient by the cardinality of
Sk = {obs ∈ batch/symbol(obs) = sk}. If this set is empty, parameters related to the sk
symbol should not be updated. This is presented in Algorithm 1. Note that this quantity
varies at each iteration for every symbol of every categorical parameter.
To support this method, we modify the loss function itself to mirror what we truly

aim to minimize while working on categorical data. On the given batch, it results to the
following loss:

F̃θ =
1

m

m

∑
k=1
∑

C,y∈Sk

1

∣ Sk ∣
fθ(C, y). (III.6)

We recall that {sk}k≤p is the union of all the alphabet attributes. With this modified loss
function, simply summing the gradients of the parameters from Equation III.3 no longer
results in an unbiased gradient estimator. It is necessary to calculate the number of terms
contributing to the gradient estimator for each symbol of each categorical parameter.
The solution is the gradient estimator for categorical features (GCE) g̃θ presented in

Equation III.7 and used by Algorithm 1.

g̃θ =
1

m

m

∑
k=1
∑

C,y∈Sk

1

∣ Sk ∣
∇fθ(C, y), (III.7)
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Algorithm 1 GCE.

Require: Z: data
Require: update(⋅, ⋅): chosen optimizer
Require: θ0: Initial parameter vector

t← 0
while θt not converged do t← t + 1

Divide Z in Batches
for batch ∈ Batches do

5: for symbol ∈ Alphabet do
csymbol ← 0

end for
g← 0⃗
for X, y ∈ batch do

10: csymbol(X) ← csymbol(X) + 1
compute ∇θt−1fθt−1(X) thanks to y
g← g +∇θt−1fθt−1(X) ▷ accumulate gradient

end for
θt ← θt−1

15: for symbol ∈ Alphabet do
if csymbol > 0 then ▷ a non-present gradient is not a zero-gradient

θt,symbol ← update(θt−1,symbol,
1

csymbol
gsymbol) ▷ scaled gradient

end if
end for

20: end for
end while

Equation III.8 states that this estimator is unbiased, proof can be found in the following
Section III.2.3:

E[g̃θ] = ∇ ∑
batch

F̃θ. (III.8)

This is a sufficient condition for convergence in the previously presented setting Section
II.3 as soon as the target loss satisfies regularity conditions. The loss function depicted
in Equation III.6 seems similar to the loss used for classification with unbalanced output
categories. Let’s recall that what we propose here is different as we consider unbalanced
input symbols. In the case where symbol groups have the same size C then the objective
function Fθ resumes to F̃θ on a single batch containing all the observations:
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F̃θ =
1

m

m

∑
k=1
∑

C,y∈Sk

1

∣ Sk ∣
fθ(C, y)

= 1

m

m

∑
k=1

1

C
∑

C,y∈Sk

fθ(C, y)

= 1

m ×C ∑
C,y∈Z

fθ(C, y)

= 1

∣ Z ∣ ∑C,y∈Z
fθ(C, y)

= Fθ,

as the m symbol groups form a partition of Z. In this case, our proposed gradient
estimator is proportional to the classic one. If one uses the vanilla optimizer, GCE is
equivalent to the classic one with a bigger learning rate:

θt = θt−1 − αgθ,t.

In this scenario, the gradient’s scale is directly related to the learning rate. However,
this relationship does not hold true for adaptive optimizers which are highly dependent on
the learning rate. In the case of Adam, the update parameter is approximately bounded
by the learning rate, making the scale transfer irrelevant.
Thus, even in a balanced scenario, all the conducted experiments show that it is more

effective to have a small learning rate and a large gradient using GCE rather than a large
learning rate and a small gradient with adaptive optimizers. Results are presented in
Section III.3.

III.2.2. GCE on relational linear regression

Let’s consider the data from Table III.1 and compare the value of the gradient af-
ter the first iteration with the classical gradient estimator and GCE. Let’s consider
a batchsize of 3, so the first iteration concerns the 3 first lines of the table, noted
{(x1, y1), (x2, y2), (x3, y3)}. With g̃θ the estimated gradient of F̃θ with the GCE method
and gθ the classical one of Fθ, it gives:

gb = g̃b =
1

3
(∇bf(x1, y1) +∇bf(x2, y2) +∇bf(x3, y3))

gapants =
1

3
(∇apantsf(x1, y1) + 0 + 0)

g̃apants =
1

1
(∇apantsf(x1, y1))

gashirt =
1

3
(0 +∇ashirtf(x2, y2) +∇ashirtf(x3, y3))

g̃ashirt =
1

2
(∇ashirtf(x2, y2) +∇ashirtf(x3, y3))

gahat = 0 but g̃ahat = ∅.

This very simple example with only one categorical attribute with a two element al-
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phabet highlights the specificity of our proposed gradient estimator. As spotted by the
equality gb = g̃b, if the parameter is not considered as categorical, this does not change
anything to its gradient estimation. This example is illustrative and the difference be-
tween gθ and g̃θ has a bigger impact on the parameter updates when there are multiple
categorical parameters, as demonstrated in the results presented in Section III.3.

III.2.3. GCE unbiasedness proof

We have defined GCE from the modified loss we aim to minimize, which makes it unbiased
by design. Nevertheless, to properly prove that GCE is unbiased, we first need to prove
that it is well defined. We initially establish the requirement for a finite amount of time
to elapse before drawing a batch with an observation associated with a specific category.

Uniform draw

Let Z be a non-empty finite set and T ⊂ Z also non-empty. We uniformly draw m > 0
elements in Z with replacement, which forms the batch. We focus on the first drawing
where at least one of the m drawn elements belongs to T . We note K̃ this drawing. Thus:

P(K̃ = 1) = 1 − ( ∣ Z ∣ − ∣ T ∣
∣ Z ∣

)m = P1

P(K̃ = n) = (1 − P1)n−1P1. (III.9)

Thanks to Equation III.9, the expectancy of the stopping time can be computed.

Theorem 5 (Stopping time). E[K̃] = 1
P1

.

Proof.

E[K̃] =
∞
∑
n=1

nP(K̃ = n) =
∞
∑
n=1

n(1 − P1)n−1P1

= P1

1 − P1

∞
∑
n=1

n(1 − P1)n.

For 0 < x < 1 we get:

∞
∑
n=1

nxn =
∞
∑
n=1

x
∂xn

∂x

= x ∂
∂x

∞
∑
n=1

xn

= x ∂
∂x

∞
∑
n=0

xn

= x ∂
∂x

1

1 − x
= x

(1 − x)2
.

Then
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∞
∑
n=1

nP(K̃ = n) = P1

1 − P1

1 − P1

P 2
1

= 1

P1

.

Remark 6. It is the same result if the drawings are done without replacement. The only
difference is a higher P1.

Now we can prove the unbiasedness of our estimator, which comes naturally as it was
designed with the loss itself.

Estimator

Let Z be a non-empty finite set and T ⊂ Z also non-empty.
We have a score function s on T :

s ∶ T Ð→ R
tÐ→ s(t)

We aim to estimate

sT =
1

∣ T ∣ ∑x∈T
s(x).

Let (Mk)k≤K a series of K draws uniform with replacement of m elements of Z.

Remark 7. Thanks to Theorem 5 we can ignore the first draws M0 such as M0 ∩ T = ∅

One notes

Mk = (Mk ∩ T )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

MT
k

⊔(Mk ∩ (Z/T )),

and

avg
MT

k

s =
⎧⎪⎪⎨⎪⎪⎩

0 if MT
k = ∅

1
∣MT

k
∣ ∑x∈MT

k
s(x) otherwise,

K̄ =∣ {k ≤K ∣MT
k ≠ ∅} ∣

Thanks to Remark 7 we have K̄ ≥ 1. Then the proposed estimator is â:

â = 1

K̄

K

∑
k=1

avg
MT

k

s.

Theorem 6 (Unbiased estimator). â is an unbiased estimator of sT
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Proof.

E[ã] = 1

K̂

K

∑
MT

k
≠∅

k=1

1

∣MT
k ∣
∑

x∈MT
k

E[s(x)]

= K̄
K̄

∣MT
k ∣

∣MT
k ∣

E[sT ]

= sT .

III.3. Experimentations

We have implemented Algorithm 1 in two different scenarios and programming languages:
deep learning models and categorical models both using one-hot-encoded categorical data.
In both cases, we aim to assess the impact of GCE. To evaluate its effectiveness, we
compare its performance with the current treatment of categorical parameters in batch
gradient descent. We use the public datasets listed in Table III.2 as well as a private
dataset from the supply chain domain for our evaluations.
Regarding public datasets, Adult Census Income (ACI) dataset [134] aims to predict

the wealth status of individuals, Compas dataset predicts the likelihood of re-offending
among criminal defendants, Forest Cover dataset [141] predicts the forest cover type
based on categorical characteristics of 30m2 forest cells, KDD99 dataset [142] aims at
predicting cyber-attacks, Don’t Get Kicked (DGK) dataset [143] predicts whether a car
purchased at auction is a good or a bad buy. Used Cars dataset from Belarus contains
vehicle attributes and aims to predict the selling price of the car.

Dataset Chicago ACI Compas DGK Forest Cover KDD99 UsedCars

observations 194m 48k 7.2k 72k 15k 494k 38k
inputs number 2 7 7 9 2 4 11
task REG CLASSIF CLASSIF CLASSIF CLASSIF CLASSIF REG
max cardinality 7.9k 42 341 1k 40 66 1.1k

Table III.2.: Dataset characteristics. We provide information on the size of the datasets
and the maximum cardinality of their categorical attributes. For instance,
in the Forest Cover dataset, no categorical input has more than 40 possible
values.

The chosen metrics for evaluating the performance are the mean squared error (MSE)
for regression tasks (REG) and the error rate (i.e., 1 −Accuracy) for classification tasks
(CLASSIF). It should be noted that during the training of the models using GCE, the
corrected loss F̃θ is utilized, while the standard loss Fθ is employed to evaluate the
performance on the test dataset.
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III.3.1. Application to deep learning

In our study, we utilized PyTorch [40] for implementing our proposed solution for deep
learning models. The framework provides ease in updating the gradient of every param-
eter using Algorithm 1. The code and the corresponding experiments can be accessed
through the GitHub repository1. To evaluate the effectiveness of our solution, we con-
ducted experiments on six different datasets with categorical data: ACI, Compas, DGK,
Forest Cover, KDD99 and UsedCars.
In order to only measure the impact of GCE, we only use the categorical variables in our

experiments. Those dataset tasks are quite easy. As a consequence we use small networks
to highlight our approach. The MLP network is made up of 3 dense layers of sizes [4,8,4].
We also perform experiments on a ResNet-like network very similar to [7]. We have tested
three different optimizers with their default settings: SGD (vanilla), AdaGrad and Adam.
Tests have been run on several batch sizes: 25...10. To record the results, each experiment
has been run 10 times. Results are reproducible in the repository and are recorded in
Tables A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10 A.11 A.12 in the appendices A.2.2.
In our experiments, we found that the use of GCE resulted in improvement in loss on
the test dataset. Figure III.4 presents the performance of GCE on the Adult Census
Income (ACI) dataset. The bigger the batch, the less GCE outperforms the classical
estimator. It is logical as in big batches, more symbols are concerned. This proves the
need to specifically handle stochastic gradients on categorical data. Results in different
settings demonstrate the advantage to use GCE whatever the optimizer. For instance,
while AdaGrad has been designed to handle gradients on sparse data (including one-hot
encoded data), the use of GCE still resulted in a clear improvement in performance. It
is noteworthy that our experiments utilized compact network architectures and solely
concentrated on the categorical characteristics of the dataset. This was done to isolate
the impact of GCE, thereby excluding input variables such as ”age” or ”income” on the
ACI dataset. Despite these stringent limitations, our approach achieved an accuracy
of 83% (as shown in Table A.4) on this dataset when employing GCE. This result is
comparable to the state-of-the-art of deep learning, as reported in [121]. Only boosting
methods have exceeded 87% accuracy, and they have employed all the features, including
the non-categorical ones.

III.3.2. Categorical model on public datasets

The experiments for categorical models were conducted using the Envision Domain Spe-
cific Language for Supply Chain, a Python-like implementation of SQL designed for
supply chain problems. This language includes a differentiable programming layer as
described in [77] that provides access to the gradients of categorical models. Stochas-
tic optimization using Adam and a relational linear regression were compared on two
publicly available datasets: the Chicago Taxi ride dataset [91] and the Belarus used car
dataset [144].
For each ride of the Chicago Taxi dataset, we use the taxi identifier, distance, payment

type and the tip amount. We use an extended version of the relational linear regression
to predict the tip based on the trip distance and the payment type. The slope depends
on the taxi and the payment method, the intercept remains shared among all the trips,

1https://github.com/ppmdatix/GCE
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Figure III.4.: Results (error rate) on the ACI dataset with the ResNet-like network. The
dashed curves represent experiments with GCE and show an improvement
on the test loss for every optimizer used, regardless of the batchsize.

as presented in Equation III.10:

ˆtips = (γtaxi × µpayment) × distance + b. (III.10)

There is one γ per taxi and also one µ per payment method, that would fit the presented
setting with the Taxi × Payment cross vector construction. As the intercept is shared
among all taxis, the dataset is unsplittable while a model based on Equation III.11

ˆtips = γtaxi × distance + btaxi, (III.11)

could be split into different datasets (one per taxi) and thus we would be in the classical
setting of a linear regression.
We also worked on the Belarus used cars dataset. We take into account the car man-

ufacturer, the production year, the origin region of the car to predict the selling price of
the car as presented in Equation III.12.

ˆprice = (γmanufacturer × µregion) × year + b. (III.12)

As reported in Table III.3, the relational batch performed better with our proposition
based on Algorithm 1 with the following setting: 10 epochs ; optimizer Adam with
default setting ; batch size of 1. Experiment was reproduced 20 times. The experiments
conducted on the Used Cars dataset can be executed at https://try.lokad.com/s/

Peseux-PhD-BelarusCars.

III.3.3. Categorical models in production

We applied GCE on the categorical model presented in Section I.5.4. It is a multiplicative
model used daily on retail data. We employed Adam optimizer with its default values
along with GCE and SGD for updating the parameters. The use of GCE results in a
significant improvement in the performance of the categorical model as compared to the
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Dataset Adam Adam & GCE

Chicago Ride 35.58 ± 1.11 9.45 ± 1.63
Used Cars (1.30 ± 0.03).10−2 (1.1 ± 0.07).10−2

Table III.3.: Results (RMSE) of relational linear regression applied to categorical
datasets. GCE strictly outperforms the traditional gradient estimator on
these two examples.

classical gradient estimator. The testing dataset’s final loss, measured in terms of decayed
MSE, is about an order of magnitude better with GCE. However, it is worth noting that
while GCE works well in practice, multiplicative models do not meet the assumptions
outlined in Section II.3. Hence, there are no convergence guarantees, and the third
assumption remains unsatisfied. To give a glitch of why such a multiplicative model
gradient is not L-Lipschitz-continuous, let’s consider h ∶ R3 → R such as h(x, y, z) = xyz.
Then its gradient is easily computed:

∇h(x, y, z) =
⎛
⎜
⎝

yz
xz
xy

⎞
⎟
⎠
.

Then the difference of the gradient can not be bounded above by the difference of the
parameters. To prove this, lets consider a, b ∈ R:

∥∇h(a, a, a) −∇h(b, b, b)∥22 = 3(a2 − b2)
= 3(a − b)2(a + b)2

= (a + b)2 ×
XXXXXXXXXXXXXX

⎛
⎜
⎝

a
a
a

⎞
⎟
⎠
−
⎛
⎜
⎝

b
b
b

⎞
⎟
⎠

XXXXXXXXXXXXXX

2

2

.

This is valid for any reels a and b, which proves that this difference cannot be properly
controlled. However this is not harmful because II.3 setting is a sufficient in theory one
but not necessary to observe convergence in practice. For many neural networks, it is
not clear if parameters are supposed to converge, but with proper learning parameters it
often does.
We have discussed optimization of categorical models through SGD using GCE but

we have iinly considered random initialization of our parameters. However appropriate
initialization of a model can reduce the learning time and prevent the model from getting
trapped in local minima. While it may be infeasible for deep learning models agnostic
from the data structure, initialization is a tractable task for categorical models. We
present our findings in the following.
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III.3.4. Categorical models initialisation

Two features example

Consider the multiplicative model presented in Section III.3.3 without the size vector
for simplicity. The categorical parameter for size is excluded as it has an ordinal order.
In this model, the parameters θstore and θcolor are associated with categories while the
parameter vector Θ aims to capture the seasonality. Now, we focus on the initialization
of θstore and θcolor, which are meant to be independent of the seasonality by construction
of the model. Thus we would like

∀s ∈ Stores,∀c ∈ Colors; θs × θc ∼ avg
i∈As×c

θstore(i) × θcolor(i), (III.13)

with As×c = {item ∣ store(item) = s ∧ color(item) = c}.
With traditional vector notations and with nc the number of colors and ns the number

of stores, we are looking c⃗, s⃗ ∈ Rnc ×Rns such that

c⃗⊗ s⃗ = A,

with A ∈ Rnc×ns

Of course, not every matrix A = [ai,j] can be factorized this way, simply because if
nc, ns > 2 then rank(c⃗ ⊗ s⃗) ≤ nc + ns < nc × ns. Consequently, as soon as the rank of the
matrix A is too large, this factorization is unfeasible.
But let assume that such factorization exists and that A is not the zero matrix. Without

loss of generality, we can also assume that ∥c⃗∥ = 1. We also assume that A1⃗ ≠ 0⃗. Then

c⃗⊗ s⃗.1⃗ = A.1⃗.

Which means that (
ns

∑
j=1
sj)c⃗ = A.1⃗. Then one can obtain c⃗:

c⃗ = 1

∥A.1⃗∥
A.1⃗. (III.14)

Then s⃗ can also be constructed because we know that there exists i1 ≤ nc such as ci1 ≠ 0.
Then

∀j ≤ ns sj =
ai1j
ci1

. (III.15)

We have demonstrated with Equations III.14 and III.15 that if such a factorization of
matrix A is possible, there is a straightforward method to obtain it. This factorization
serves as an excellent starting point for the initialization of our multiplicative model
parameters. However, since an exact factorization is not always feasible, our goal is to find
an approximation. In the following section, we introduce and discuss this approximation
method, providing an example of its application on the Celio dataset.

Generalization to Singular Value Decomposition

The issue of initializing parameters properly can be resolved by employing matrix de-
composition. Specifically, any matrix A can be represented through its Singular Value
Decomposition (SVD), given by
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A = UΣV ⋆, (III.16)

where U and V are unitary matrices, and Σ is a diagonal matrix with non-negative and
non-increasing values on its diagonal. This decomposition is not unique, and its existence
can be derived using the spectral theorem (see Appendices A.2.1).
By definition, Σ can be written:

Σ =∑
i

σiPi,

with Pi = ei⊗ ei the outer product of standard basis vectors. Applying this notation to
the Equation III.16 gives:

A =∑
i

σiUi ⊗ Vi. (III.17)

Consequently, the best approximation of the matrix A through an outer product is
given by the term with the largest singular value, that is, σ1U1 ⊗ V1. Such practical
decomposition is proposed in Example 4 If the other σi are equal to zero, it reduces to
the previous section with the matrix being factorized with only two vectors.
Using the first term of this matrix decomposition as an approximation provides a good

starting point for initializing the parameters of any multiplicative model, such as the one
presented in Section I.5.4.

Example 4. Considering a R3×3 matrix, its SVD results in the following:

⎡⎢⎢⎢⎢⎢⎣

9 3 6
8 8 6
0 3 7

⎤⎥⎥⎥⎥⎥⎦
∼ 17.5

⎡⎢⎢⎢⎢⎢⎣

0.62
0.72
0.32

⎤⎥⎥⎥⎥⎥⎦
⊗
⎡⎢⎢⎢⎢⎢⎣

0.65
0.49
0.59

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

best approximation

+5.57
⎡⎢⎢⎢⎢⎢⎣

0.37
0.09
−0.92

⎤⎥⎥⎥⎥⎥⎦
⊗
⎡⎢⎢⎢⎢⎢⎣

0.73
−0.17
−0.66

⎤⎥⎥⎥⎥⎥⎦
+ 3.26

⎡⎢⎢⎢⎢⎢⎣

0.69
−0.69
0.21

⎤⎥⎥⎥⎥⎥⎦
⊗
⎡⎢⎢⎢⎢⎢⎣

0.23
−0.86
0.47

⎤⎥⎥⎥⎥⎥⎦
.

(The equality is not exact due to numerical imprecision). The Python code can be found
in the Appendix Listing A.3

The key idea behind SVD is to capture the underlying structure of the data by decom-
posing it into a set of simpler components. By doing this, it becomes possible to represent
the data in a more compact form, which can be useful for compression, visualization, and
other applications.
The issue of initialization for multiplicative categorical models is of critical importance

at Lokad to save daily computing resources. To the best of our knowledge, the proposed
initialization technique for multiplicative categorical models is a novel contribution. We
have employed this technique on the anonymized Celio dataset to determine the optimal
initialization for our categorical parameters. Specifically, we focused on initializing two
categorical parameters while leaving the others at random initialization. The experimen-
tal results can be found in the repository, specifically in this notebook 2. Figure III.5
illustrates the effectiveness of using SVD for initializing parameters in a multiplicative
model. Note that the similarity between the errors obtained from the zero vectors and
the second term of SVD is coincidental. The first term obtained through SVD (repre-
sented by the green dashed line) yields the most accurate result, while subsequent SVD

2https://github.com/ppmdatix/GCE/blob/main/SVD-Initialisation/svd.ipynb
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terms and the 0 matrix (generated by taking the outer product of two zero vectors) fail
to outperform random initializations.
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Figure III.5.: The histogram depicts the error distribution in estimating a matrix that
represents the average sales based on two attributes of the Celio dataset
(in its anonymized form). In order to estimate this matrix, we utilize two
vectors, each from a corresponding attribute table, and employ their outer
product. For the purpose of random initialization, we tested 100,000 com-
binations.

Conclusions

This chapter focuses on the challenge of using SGD for machine learning on categorical
data. One-hot-encoding is proposed as a solution for creating interpretable models from
categorical data, however, this encoding method can result in incorrect gradients and
incorrect training results. The novel gradient estimator presented overcomes this problem
by recognizing that a non-present gradient should not be considered as a zero-gradient.
This new estimator allows for the correct treatment of categorical data in gradient-based
models, including deep learning. The results of the study, including code and details, are
open-sourced and demonstrate the utility of the proposed solution on various datasets,
including an in-production supply chain model. This model was also used as an example
to emphasize the significance of appropriate initialization of a categorical model. It was
demonstrated how singular value decomposition can resolve this issue for multiplicative
models.
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This chapter is motivated by the lack of attention given to categorical data in both
public datasets and the field of machine learning as a whole. The primary goal of in-
troducing the GCE is to highlight the significance of categorical data and encourage the
development of new techniques that effectively address its unique characteristics. Moving
forward, the focus of this work is to enhance the implementation of GCE in deep learn-
ing, thereby facilitating its adoption within the research community. Furthermore, the
broader adoption of differentiation on relational queries, as discussed in the first chapter,
will also benefit GCE, as it aligns with the framework’s targeted models.
In the preceding chapter, we introduced two distinct sources of stochasticity for gradient

estimation: one based on the observations and the other based on the function itself. GCE
is derived from a reorganization of the gradient contributions within each batch. As a
result, the subsequent and final chapter focuses on harnessing the stochasticity achievable
through the decomposition of the LCG . This decomposition has the potential to mitigate
memory consumption and enhance the optimization process.
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IV. Gradient code stochasticity,
overfitting and memory
consumption

The work presented in this chapter is currently undergoing review for publication in a
journal.
.
The upcoming section serves as a link between Chapters I and III, bringing together

the disparate fields of compilation and optimization. Communication between these two
communities is limited, and this work aims to bridge this gap.

Introduction

In the field of gradient-based models for solving classification and regression problems,
the use of automatic differentiation facilitates the training of such models as the expert
does not need to hand-code the gradient. However, this process can be resource-intensive,
particularly with respect to memory consumption during the reverse mode of AD, which
is necessary for these types of problems. To reduce memory usage, checkpointing can be
employed as a trade-off between execution speed and memory consumption [24].
In addition to the resource consumption issue, overfitting the training data is a common

problem that can reduce the generalization power of the model. To mitigate this issue,
the dropout method was introduced in [135]. Dropout involves temporarily turning off
certain nodes in the execution graph during training.
To address the issue of memory consumption without relying on checkpointing, Ran-

domized Automatic Differentiation (RAD), a novel gradient estimator was proposed
in [114]. RAD, which is unbiased, is built by drawing random paths through the back-
propagation execution graph, effectively acting as backpropagation dropout. The unbi-
asedness of the estimator is crucial as it ensures that the convergence properties of the
gradient estimator are preserved. The use of a uniform distribution proposed by [114]
for drawing random paths is just one possibility, but other distributions may lead to
better learning results. Furthermore, the ”best” distribution may depend on the train-
ing dynamic, and it should be selected with respect to the learning stage. Ideally, the
best distribution should be optimized through heuristics that may emphasize the most
important paths for the gradient for the current iteration of the training process.
Our approach to constructing the gradient estimator is to keep it unbiased regardless

of the path distribution, and we have tested various distributions and found one that out-
performs the uniform one in various settings without increasing memory consumption.
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IV.1. Memory consumption and gradient based methods

IV.1.1. Checkpointing

The process of reverse mode automatic differentiation results in programs with a specific
structure. The adjoint program P consists of a forward pass P⃗ followed by a backward
pass ⃗P . When executing ⃗P , certain values computed during P are required. There are
two options to access these values: store them during the execution of P or recompute
them. This choice requires a trade-off between time and memory usage. In checkpointing
strategies, only the checkpoint values are stored, whereas the others are recomputed from
the most recent checkpoint when needed in the forward pass computation graph.

x, y ←Ð . . . // Checkpoint?

z ←Ð x × y
. . .

z ←Ð . . .

x←Ð z × y
y ←Ð z × x

Listing IV.1.: Reverse mode automatic differentiation and checkpointing. Variables x
and y are computed in the forward pass and reused in the backward one.
Checkpointing techniques arbitrate between storing or recomputing them.

As presented in Listing IV.1, to calculate the adjoint of x, the value of y computed
in the first pass is required. Two options exist to access this value: either store y or
recompute it using the checkpointed values of x and y.
There exists two checkpointing tactics without any trade-off: STORE-ALL and RECOMPUTE-

ALL.

STORE-ALL

STORE-ALL strategy involves storing all intermediate values during the forward pass of
the computation graph, so that during the backward pass, all necessary values are readily
available for efficient gradient computation. This requires significant memory usage to
store all intermediate values, but reduces the computational cost of the backward pass
as all values can be accessed without recomputation. It is presented in Figure IV.1.

RECOMPUTE-ALL

RECOMPUTE-ALL strategy involves recomputing all intermediate values during the
backward pass. This reduces the memory requirements, as intermediate values are not
stored, but increases the computational cost of the backward pass as recomputation is
required. It is presented in Figure IV.2.
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Figure IV.1.: STORE-ALL. The forward paths are represented as the full lines while the
dashed ones represent the backpropagation. The input node is represented
by the purple nodes on the left, whereas the output node of the model is
denoted by the yellow node on the right. All intermediate variables are
stored.
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Figure IV.2.: RECOMPUTE-ALL. No intermediate variables are saved, one needs to re-
compute each one of them from the start (in purple) to determine the
adjoint. A function execution using this strategy is presented in Appendix
A.3.1

Hybrid strategies

Hybrid strategy combines STORE-ALL and RECOMPUTE-ALL approaches. It per-
forms periodic checkpointing during the forward pass, storing the necessary activations
and recomputing the remaining activations during the backward pass. This strategy aims
to strike a balance between the memory requirements of STORE-ALL and the compu-
tational overhead of RECOMPUTE-ALL. The frequency of checkpointing can be tuned
based on the available memory and computational resources. If the available memory is
limited, more frequent checkpointing may be necessary to avoid running out of memory.
On the other hand, if computational resources are limited, less frequent checkpointing may
be more appropriate to reduce the overhead of recomputing activations. Hybrid strate-
gies can be more efficient than either STORE-ALL or RECOMPUTE-ALL approaches
alone, but they require careful tuning to achieve optimal performance.
While optimal strategies have been identified in some specific cases [145], the general

case is still an active area of research.
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IV.1.2. Adsl take on checkpointing

Adsl is designed to make differentiation as easy as possible, so its practical implementation
has to tackle the checkpointing issue.
First, it should be noted that the SA property of Adsl does not completely eliminate

all checkpointing issues. If an intermediate variable is required for both forward and
backward passes, both the STORE-ALL and RECOMPUTE-ALL solutions may satisfy
the SA property. If the STORE-ALL solution is chosen, it is necessary to store a variable
created by the tupling of the intermediate variable. On the other hand, recomputing the
intermediate variable is also SA since its original version is used only once in the forward
pass.
Then Let us recall that in a categorical model, the stochastic loss only employs the

parameters that are associated with the observation table line, as shown in Figure III.2.
Adsl has been especially crafted for such categorical models so only the concerned fraction
of the parameters are loaded for each observation. Furthermore, due to the utilization
of PolyStar, each observation pertains to only a small fraction of the model parameters.
Therefore, memory consumption is not a significant concern during the computation of
stochastic loss. Consequently, in our implementation of automatic differentiation in Adsl,
we have chosen to store almost every variable and rely on the STORE-ALL tactic.
The only exception is about the states of a loop that are recomputed for the computa-

tion of the adjoint. Consider that a loop is fundamentally wi = L(ri) (L loops on a read
vector ri and writes the vector wi. Differentiating it becomes ri = L(ri,wi,wi). We reduce
this to ri = L(ri,wi) because the wi themselves are either sums (the value of which cannot
have an effect on the gradient) or output arrays, which can be recomputed from the ri
instead. Since a copy of the body of this loop already exists in the list of statements, we
cannot let it keep its variables, so we create a remapper that will be invoked on all the
variables inside the loop. We emit a copy of the loop to export the initial state as an
array as it is needed for the reverse pass.

IV.1.3. Embedded artificial intelligence

The range of applications for machine learning methods based on gradient descent is
vast, encompassing fields such as healthcare and supply chain management, as discussed
in previous chapters. However, there are numerous problems where these models could be
highly beneficial, but their implementation is constrained by limited computing resources.
This area is referred to as embedded artificial intelligence, which involves deploying ma-
chine learning algorithms and techniques within resource-constrained hardware devices.
This subject is extensively studied [146, 147]. While it is impossible to list every such
device, several notable examples can be mentioned. First, smart vehicles employ embed-
ded artificial intelligence for tasks such as lane detection, object recognition, and path
planning [148]. These vehicles must strike a balance between computational power and
accurate driving performance. They cannot rely on a network connection for computa-
tions, as the system must function in all environments, including tunnels. Second, wear-
able devices like fitness trackers, smartwatches, and health monitoring devices depend
on embedded artificial intelligence for various tasks, including activity recognition, heart
rate monitoring, and sleep tracking. These devices typically possess limited processing
power due to their small size and lightweight design. Similarly, drones and autonomous
robots utilize machine learning for navigation, object detection, and obstacle avoidance,
all while operating within the constraints of their available processing power [149]. In
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each of these applications, the machine learning models must function effectively despite
the limitations of the hardware they are deployed on.

As discussed in Section IV.1.1 above, the most resource-intensive aspect of a gradient-
based model is the backpropagation of the gradient. Consequently, one of the primary
challenges in developing embedded artificial intelligence is to reduce the memory con-
sumption associated with this part of the model optimization process. Checkpointing
is an interesting technique, as an appropriately tailored hybrid strategy can limit the
memory requirements for training a model. However, this approach comes at the expense
of longer training times, which is often an unacceptable trade-off for many applications
in embedded artificial intelligence.

IV.2. Overfitting the data and dropout technique

In addition to memory consumption, under or overfitting is a common problem in machine
learning, where the model learns to fit the training data too closely or not enough,
resulting in poor performance on new, unseen data. If the model is too simplistic or
under-parameterized, it may struggle to effectively represent the underlying data. This
leads to bias in the model, commonly referred to as model bias, resulting in an underfitting
situation. On the other hand, if the model is excessively complex or over-parameterized
relative to the size of the data, it has the capacity to learn the noise or variance present
in the data. This phenomenon is known as over-learning, and it often leads to poor
generalization performance on new, unseen data. A graphical illustration of overfitting
is given in Figure IV.3.

Figure IV.3.: Illustration of overfitting with a model that aims to predict Y in function
of X. On the left, the model represented with the orange line does not fit
data enough. On the center, the model captures the pattern of the data
without being exact on every observation. On the right, the model is exact
on every training observation but loses its generalization capabilities.

One common approach to prevent overfitting is dropout [135] which can help prevent
the model from memorizing the training data too closely. It is a regularization trick that
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randomly deactivates some neurons in the architecture as presented in Figure IV.4.

(a) Dense Layer (b) Dense Layer with dropout

Figure IV.4.: Dense layer and Dropout. Turning off a neuron involves turning off all the
parameters related to this one. In (b), the fourth neuron of the first layer
and second neuron of the second layer are turned off.

Dropout can be seen as a form of model averaging [150]. This encourages the network
to learn more robust features, as it is forced to rely on a subset of neurons rather than
relying on a single, highly correlated group of neurons. There is extensive research to
show that applying dropout does not remove the convergence properties, the key point
is that the averaging of the network gives an unbiased estimate of the gradient, which is
sufficient in certain conditions.
During the training process with dropout, the number of active weights in the network

is limited to a fraction of the total weights of the network, which highlights the fact
that smaller networks could theoretically achieve the task, thus reducing the size of
the network. However, current implementations of dropout do not facilitate memory
reduction, as they primarily focus on reducing overfitting and do not take into account
such size reduction.
Dropout techniques are applicable to deep learning models where parameters do not

have a specific meaning and can be randomly deactivated. However, they are not suitable
for white box models like categorical models. In such models, if a parameter is associated
with a category through one-hot encoding, deactivating it is equivalent to deactivating
the input vector. Consider the application of dropout on relational linear regression as
illustrated in Figure III.2. This would entail estimating the target value using either the
slope or the intercept alone. Such an approach is not logical. Therefore, dropout cannot
be applied to these models, even though the resulting regularization and memory con-
sumption reduction are desirable features. An intermediate solution is to apply dropout
not during the loss calculation, but during the backpropagation of the gradient.
This technique would preserve the output of the model, while introducing stochasticity

to the gradient computation from the code of the loss itself ( derived from the architecture
of the model), and not only from the dataset split into batches. The process is illustrated
below.

IV.3. Sample random paths

In Section II.2, we have presented how the estimation of the gradient can be on the ob-
servations or on the code itself. In the following section we will focus on the stochasticity
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obtained from an appropriate randomization of the code.

IV.3.1. Gradient code stochasticity

Thanks to the introduction of LCG in Section II.2.1, and thanks to Equation II.33, the
gradient is decomposed as a sum of all the path contributions. This decomposition can
be generalized as Equation IV.1, regardless of the source of each term of the sum.

∇θf = ∑
i=1..N

gθ,i. (IV.1)

We will stick to the formulation where each gθ,i is related to a specific backpropagation
path, even though all the following applies to optimization problems where the objective
function is expressed as a sum, since the derivative operator is linear.
The RAD approach [114] employs a uniform distribution across all possible paths.

However, we suggest that not all gradient paths are equally important at any given
time of the optimization process. Therefore, we aim to go further by utilizing a non-
uniform distribution with varying probabilities to draw a gθ,i to use it during gradient
descent. Let us define It ∼ (ptθ,1, . . . , ptθ,N) the probability to draw gθ,i to compute gradient
descent, defined over the T ∈ N epochs. For notational simplicity, we omit θ, which gives:
It ∼ (pt1, . . . , ptN). We have

∀t ≤ T
N

∑
i=1
pti = 1.

The intuition tells us that locally, there is an optimal probability distribution that
would decrease faster the objective function fθ. There is no reason that this distribution is
uniform. To support this intuition, we argue that certain gθt,i may be negligible compared
to others at a specific stage of the optimization process, i.e. at a specific iteration t.
Drawing such gθt,i would have an almost negligible impact on minimizing the objective
function. As a result, resources would be better utilized by computing the gθt,i that
significantly reduces the target function. However, the magnitude of the gθt,i depends
on the position of the parameter thetat in the search space; therefore, the probability
distribution should be updated alongside the iterations.
One of the consequences of such non-uniform distribution over the gθ,i is the construc-

tion of a gradient estimator that may be biased. This is problematic as many convergence
guarantees [98] rely on the unbiasedness of the gradient estimator. To address this is-
sue, we present two key points. First, the probability distribution It varies during the
iterations of the learning process. The similarity between a gθ,i and the exact gradient
is not constant over the search space of θ. Therefore, our objective is to continuously
update the probability associated with the terms of the gradient sum. Using the uniform
distribution gives an unbiased estimator which gives convergence guarantees, so a proper
update rule will smooth the probability associated to a backpropagation path gθ,i over the

iterations, i.e 1
T

T

∑
t=1
pti will tend toward 1

N . In that case, the estimator becomes unbiased

over the iterations. Secondly, and more importantly, we propose a modification to the
computed gradient to ensure the unbiasedness of our novel estimator, regardless of the
evolution of It:

Definition 10 (Normalization trick). Let’s define gI the stochastic gradient estimator
relative to It ∼ (pt1, . . . , ptN):

108



gIt =
⎧⎪⎪⎨⎪⎪⎩

1
ptI
gθ,It , if ptI > 0

0, otherwise.
(IV.2)

The corrective term 1
pti

is introduced in order to preserve the unbiasedness of the gradi-

ent estimator, which is necessary to rely on convergence guarantees [98]. gIt is unbiased
as long as none of the pti values are equal to zero:

∀t ≤ T E[gIt] = ∑
i=1..N

pti ×
1

pti
E[gθ,i] = E[∇θf].

This normalization trick evacuates all the possible issues about unbiasedness of a non
uniform distribution over the backpropagation paths. Let’s remember that our objective
is to constrain memory usage and prevent overfitting without excessively lengthen train-
ing time. Consequently, seeking the optimal term gθ,i of the gradient at every iteration
is infeasible. Inspired by multi-armed bandits [151], we introduce a heuristic that bal-
ances the exploration of the best probability distribution with the utilization of the one
established during exploration (a.k.a. exploitation).
In addition to reducing memory consumption, it might help the optimization process

by avoiding local minima. In gradient descent a local minimum gives a zero gradient
that might slow or even stuck the minimization of the objective function. However the
gradient being equal to zero does not mean that all the gθ,i are zero. Using one of them
might help to avoid this unwanted scenario. An example is given on a toy function:

Example 5. Let’s consider the function f3 ∶ R→ R : f3(x) = x2(2 + cos(4x)).

x

y
y = f3(x)

y = x2

Figure IV.5.: Representation of f3(x) = x2(2 + cos(4x)). This function has an infinite
number of local minima, but its general trend follows x2.

This function is chosen because it presents multiple local minima. The decomposition
of the derivative of f3 following the backpropagation paths of its LCG is given in Equation
IV.3.

∂f3
∂x
= 2x(2 + cos(4x))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1st component

−4x2 sin(4x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2nd component

. (IV.3)
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Figure IV.6.: Minimization of f3 through SGD with Adam and its default values as opti-
mizer. The starting point is x = 5. The blue curve represents the use of the
full gradient from equation IV.3, which gets trapped in a local minimum.
In contrast, the red curve represents the random selection of gradient terms
during iterations, which allows for the avoidance of local minima and leads
to a decrease in the target function.

If one employs the true gradient of f3 and applies gradient descent with standard opti-
mizers, it will undoubtedly become trapped in a local minimum. However, if one opts to
utilize the first component of the gradient, it will reach the global minimum of f3 at x = 0.
This claim is supported by Figure IV.6

This example highlights the usefulness of approaches based on code stochasticity. From
a practical standpoint, there are various techniques to access such decomposition and
draw random paths in the backpropagation graph. We present a specific approach for
neural networks and a generic one that is applicable to any type of gradient-based model.

IV.3.2. Projection matrices on Neural Networks

RAD [114] introduced a method to draw random paths on the backpropagation graph of
neural networks. In order to generate random pathways in the backpropagation graph,
RAD selects random projection matrices to sample some paths.

W1 W2 W3

x0

x1,3

x1,2

x1,1

x2,3

x2,2

x2,1

y

Figure IV.7.: Dense Layers with two selected paths. The graph being directed, selecting
a forward path is equivalent to selecting a backward one.
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Equation II.33 gives that the full gradient is the sum of the contributions of all the
paths in the dense architecture. It is important to note that parameters are the edges
of the Figure IV.7 while parameters are the parent nodes in an execution graph. We get
y =W3W2W1x0.
To get a path in a neural layer, one can multiply each layer by a Pi = ei ⊗ ei which is

the outer product of standard basis vectors. Equation IV.4 (IV.5, respectively) denotes
the contribution of the red (blue, respectively) path depicted in Figure IV.7 to the overall
gradient of y.

∂y

∂θ
= ∂W3W2W1x0

∂θ
= ∂y

∂W3

P3
∂W3

∂W2

P3
∂W2

∂W1

P1, (IV.4)

∂y

∂θ
= ∂W3W2W1x0

∂θ
= ∂y

∂W3

P2
∂W3

∂W2

P2
∂W2

∂W1

P3. (IV.5)

Although Pi matrices are square, they can be represented as ei vectors to save memory.
The storing cost decreases quadratically thanks to this factorization.
However, for deep neural networks, a single path is insufficient to properly estimate

gradients for efficient network updates due to their large size. To address this issue, a
fraction k

d of possible paths can be sampled by multiplying gradient layers with a random
mask P d

k :

P d
k =

d

k

k

∑
s=1
Ps.

Each Ps is sampled from {Pi}i≤d. If the sampling is uniform then the estimator is
unbiased thanks to Equation IV.6

E[P d
k ] =

d

k
E[

k

∑
s=1
Ps] =

d

k

k

d
Id = Id. (IV.6)

Such masks can be stored in order to save memory with the decomposition P = RRT . R
is not a square matrix anymore but a d×k one, which reduces the memory impact as k < d.
In order to produce such a mask R, one can compute a random matrix of independent
Rademacher random variables. Such random variables sample uniformly random paths.
In Section IV.4 we develop how to draw non uniformly paths in the execution graph.
The presented method, introduced by RAD, applies on neural networks but lacks gen-

eralization. In the following section we present how to access paths in the execution
graph of an adjoint program thanks to a compilation trick.

IV.4. Beyond uniform distribution on backpropagation
paths

IV.4.1. Selective Path Automatic Differentiation

The search for a good path is computationally demanding, as finding the exact best path
implies evaluating all possible paths. An approximation is then to draw and evaluate a
subset of path and choose the best path of this subset. But even in this case, repeating
the procedure at every iteration will be costly. Remark that if a particular gθ,i has the
highest contribution to the gradient magnitude at a specific point θt, then it will also
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have the highest contribution in the surrounding parameter space as SGD is an iterative
method. Hence, using this gθ,i for a few iterations seems like a reasonable approximation.
This approximation is even more reasonable when we assume that the difference between
the gθ,i values is independent of the batch being used. In other words, the more the
observation batch is representative of the dataset, the better the approximation.
We introduce Selective Path Automatic Differentiation (SPAD), a new gradient esti-

mator which deals with the trade-off of choosing the best component and keeping it for
the next few iterations. We denote P the set of the LCG paths. We sample m random
paths in the backpropagation graph, denoted as Pm ⊂ P, and calculate the induced gra-
dients gθ,i (with i ∈ [1..m] without loss of generality) restricted to these paths. Among
these m paths and for the next kmax iterations, the one yielding the largest gradient imax

is associated to an almost one probability with keeping an ϵ > 0 fraction of exploration
for all the other paths (not restricted to the m ones).
To represent SPAD, we conveniently introduce the Almost-Dirac notation Dϵ

i(j) in
IV.7 below:

∀ϵ > 0;∀i, j ≤ N ; Dϵ
i(j) = (1 − ϵ)δj=i +

ϵ

N − 1
δj≠i, (IV.7)

for a given i ≤ N , Dϵ
i can be used as probability distribution over [1..N] as ∑jD

ϵ
i(j) = 1.

The probability distribution of SPAD described above is formalized by It from Equation
IV.8.

∀t ≤ T It ∼Dϵ

iqkmax
max

, (IV.8)

with itmax = argmax
i∈Pm

∥gθ,i∥ and t = qkmax + r (euclidean division).
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Algorithm 2 SPAD.

Require: Z (data)
Require: θ ∈ model (model parameters)
Require: epochs, iterations, kmax, m, ϵ (hyper parameters)

epoch← 0
while epoch < epochs do

k ← 0
for i ∈ iterations do

5: batch = Z[i]
do forward on batch
for θ ∈ rev(model) do

if k ≡ 0 (mod kmax) then
draw m random paths

10: imax = argmax
j≤m

∥gθ,j(batch)∥

for j ≤m do
pθ,j = (1 − ϵ)δj=imax + ϵ

N−1δj≠imax

end for
end if

15: draw I according to (pθ,1, . . . pθ,m)
update θ with 1

pθ,1
gθ,I(batch)

end for
k ← k + 1

end for
20: epoch← epoch + 1

end while
Return: θ
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SPAD is presented in Algorithm 2 and is particularly appealing as it avoids the need for
a complete evaluation of the gradient, which is a resource-intensive process. Additionally,
it does not require additional memory beyond storing the m random paths and their
associated gradients. Notice that, as an implementation technique, checkpointing does
not influence the gradient estimation itself, but rather the manner in which it is obtained.
Consequently, all variations of checkpointing are compatible with SPAD. By choosing the
largest gradient among the sampled paths, this approach has the potential to enhance
the learning process, as the target loss is expected to decrease more rapidly compared to
a random selection of the path. This heuristic introduces two new parameters, namely m
and kmax. However, there is a tradeoff to be made as increasing m may lead to a better
gradient estimation but also slows down the learning process. With m and kmax both set
to 1, SPAD reduces to the RAD method exclusively.
The parameter m represents the number of gradient paths that we select to determine

the one with the largest contribution. It is desirable to have a large value of m in order
to ensure that the strongest contribution is identified. The estimation of a maximum is
always underestimated but it will not have a strong impact on our experiments thanks
to quite large values of m. The parameter kmax determines the number of consecutive
iterations that the chosen gradient path is used for. A larger value of kmax can be
used if the chosen path is more effective. During the kmax iterations, the parameters
corresponding to the unchosen paths are frozen. If kmax is set to a large value, it makes
the method similar to freezing layers presented in [136]. If kmax is large, a large value for
m is preferable to ensure that the chosen random path is carefully selected for multiple
iterations. However, if kmax is small, we can tolerate a smaller m since the path selection
has an impact on a limited number of iterations.
SPAD is an intermediate solution between RAD that does not try to determine the

optimal choice of distribution and optimizations schemes that would need to duplicate
the memory for the parameters, which would eliminate the benefits of our method. In
the following part we show how to implement SPAD thanks to code stochasticity based
on automatic differentiation, whatever the shape of the model to optimize, whereas RAD
implementation based on matrix injections was only compatible with neural networks.

Compatibility with GCE

This chapter is presented as a bridge between Chapters I and III. It has clearly been
explained how the compilation approach led to the SPAD gradient estimator, without
any assumption on the form of the model. For the relationship with Chapter III, one has
to note that SPAD and GCE are compatible.
Both approaches are particularly suited for categorical models. While GCE has been

designed to handle gradient updates of categorical parameters, SPAD enables a form
of dropout for such models. The limited number of parameters involved in categorical
models makes it impossible to use raw dropout, whereas SPAD only deactivates back-
propagation nodes. Consequently, this regularization technique is now available for this
set of white box models.
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IV.4.2. From compilation to random paths: implementation
generalization

To implement SPAD, we need a computational way to obtain the terms of the gradient
from Equation II.33 written as a sum. It reduces to finding the backpropagation paths
among the graph. The LCG being oriented, finding forward paths or backpropagation
paths is the same problem. In a general context, and without any assumptions on the form
of the LCG, we propose an alternative method for performing this task on any language
suited for automatic differentiation satisfying the Static Single Assignment (SSA) and
the Single Access (SA) properties.
Due to the SA property, the LCG of a program will contain tupling nodes, as highlighted

in Example 6 below. They make possible the construction of programs using a variable
multiple times by duplicating it. With the exception of these tupling nodes, there is
only one edge that exits a node, which is a strict translation of the SA property on the
LCG. Consequently, choosing a contribution to the gradient from Equation II.33 involves
following the path from a parameter node to the output node and selecting one of the
edges emanating from the encountered tupling nodes.

Example 6. Let’s consider the function f1(x, y) = ex×(x+y). To satisfy the SA property,
since x is utilized twice in the program, its node is tupled, resulting in the LCG and the
corresponding program as depicted in Figure IV.8:

×

+

x y

z

x1 x2

a b

x← Param0

y ← Param1

x1, x2 ← x

a← ex1

b← x2 + y
z ← a × b
Return z

Figure IV.8.: (Left) SA-LCG of f1(x, y) = ex(x+y). The node x is a tupling node. (Right)
SSSA-SA version of the program relative to f1.

.

The tupling of variables in order to fulfill the SA property results in the gradient being
expressed as a sum as proved in Equations IV.9. This is a key aspect of reverse mode
automatic differentiation, also known as backpropagation. It is given by letting x be a
parameter of f tupled in N variables {xi}i=1..N , Equation II.33 turns into:

∂f

∂x
= ∑

xÐ→z

Π
zkÐ→zl

∂zl
∂zk

(IV.9)

=
N

∑
i=1

∂xi
∂x

∑
xiÐ→z

Π
z′
k
Ð→z′

l

∂zl′

∂zk′

=
N

∑
i=1

1.
∂f

∂xi
=

N

∑
i=1

∂f

∂xi
.

The chain rule of differentiation in reverse mode yields x̄ = ∂f
∂x called the adjoint of x,
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which is our objective. Figure IV.9 highlights how the SSA-SA property directly gives
the gradient as a sum.
As previously framed, SPAD can be conceptualized as a form of dropout during back-

propagation. By implementing SPAD independently of any specific model architecture, a
generalized form of dropout can be introduced to a wider range of machine learning mod-
els. While dropout is a viable technique for deep learning models comprising numerous
parameters without distinct significance for each individual one, it may not be suitable
for smaller models.
The two approaches to obtain the gradient expressed as a sum, matrix injection or

differentiation of SSA-SA languages, both rely on the multiple use of the parameters in
the model implementation. If there is one and only one path from the parameter to the
output node of the LCG, SPAD is pointless. Hopefully, this does not happen in many
cases, as presented in the experiments Section IV.5.

g(x) h(x) k(x)

x
u←Ð g(x)

v ←Ð h(x)

w ←Ð k(x)

. . .

x̄←Ð 0

x̄ += w̄k′(x)

x̄ += v̄h′(x)

x̄ += ūg′(x)

.

.

x1, x2, x3 ←Ð x

u←Ð g(x1)

v ←Ð h(x2)

w ←Ð k(x3)

. . .

x̄3+ = w̄k
′
(x3)

x̄2+ = v̄h
′
(x2)

x̄1+ = ūg
′
(x1)

x̄←Ð x̄1 + x̄2 + x̄3

Figure IV.9.: (Left) Generic non SA LCG, with x being used three different times. The
dashed lines represent backpropagation. g, h and k are arbitrary differen-
tiable functions. (Center) SSA version of the derivative program. (Right)
SSA-SA version of the derivative program.

.

IV.4.3. Adsl take on SPAD

To introduce this novel gradient estimator into our programming language Adsl, we
extend its grammar by adding a new statement:

⟨v ←Ð ⊕SPAD tup⟩

This innovative statement embodies the SPAD algorithm and incorporates the probabil-
ity distribution over the elements of the tuple. Instead of calculating the exact gradient
using the adjoints presented in Section I.4.5, one can use SPAD and substitute the dif-
ferentiation of a tupling with this new statement:
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⟨tup← v⟩SPAD = ⟨v1 . . . vt ← v⟩SPAD = ⟨vSPAD ← ⊕SPAD v1 . . . vt⟩

Adsl has been presented a a language close by differentiation. As a result, it is ex-
pected that the adjoint of this new statement should be defined to align with this
characteristic. However it is not immediately apparent what the statement represent-
ing ⟨v ←Ð ⊕SPAD tup⟩ should be. We will not attempt to create such an adjoint, as it
introduces more problems than it resolves. Consequently, when using SPAD in Adsl, we
forget higher-order derivatives. However, we maintain that Adsl remains differentiable,
as the ⊕SPAD cannot originate from a raw Adsl program but only from the differentiation
of one.

IV.5. Experiments

We conducted experiments on two different types of tasks. Firstly, we applied our novel
gradient estimator to a set of functions that are commonly used for evaluating optimiza-
tion algorithms. These functions are not particularly suited for gradient descent as they
present many local minima, but SPAD might solve this issue by following estimations
of the gradient rather than the exact one. Evaluating SPAD on these functions further
validates the usefulness of the implementation beyond the domain of neural networks.
Secondly, we tested the estimator on the MNIST and the CIFAR10 datasets using stan-
dard deep architectures in order to compare our method to RAD. These experiments vary
significantly in several aspects. Firstly, the data varies greatly, as the first search space is
2-dimensional while our dense architecture for MNIST presented in A.3.3 has over 410k
parameters. Additionally, the minimum of the optimization functions is known, which
is obviously not the case for neural networks. The diversity of tasks provides us with a
deeper understanding of the implications of the proposed method.
Remember that the theoretical probability distribution given by SPAD is an Almost-Dirac
on the largest gradient contribution. In practice we do not use this exact estimator gI but
simply gθ,I by selecting the largest gradient contribution for kmax iterations. It removes
the necessity of a random draw at each iteration for choosing the backpropagation path.
Consequently a proper implementation of this version requires the storage of only two
random paths as our goal is not to sort the gradient norms, but rather to find the argmax.
Therefore, the memory usage is independent of the value of m. This alternative version
of SPAD is depicted in Algorithm 3.

IV.5.1. Optimization functions

We evaluate the performance of the methods on four optimization functions by considering
the ϵ-success rate from Definition 11, which measures the ratio of optimizations with
different initializations that end less than ϵ away from the known global minimum for the
given function.

Definition 11 (ϵ-success). XT ∈ Z is an ϵ-success for the minimization of f if and only
if f(XT ) − argmin

X∈Z
f(X) < ϵ.

We conduct experiments using three different setups. The baseline method is SGD with
the classical full gradient estimator, and we compare it against RAD and SPAD. The
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Algorithm 3 SPAD in practice.

Require: Z (data)
Require: θ ∈ model (model parameters)
Require: epochs, iterations, kmax, m, ϵ (hyper parameters)

epoch← 0
while epoch < epochs do

k ← 0
for i ∈ iterations do

5: batch = Z[i]
do forward on batch
for θ ∈ rev(model) do

if k ≡ 0 (mod kmax) then
draw m random paths

10: imax = argmax
j≤m

∥gθ,j(batch)∥

end if
update θ with 1

pθ,1
gθ,imax(batch)

end for
k ← k + 1

15: end for
epoch← epoch + 1

end while
Return: θ

functions used for evaluation are described in A.3.2 and have a proven minimum thus
the definition of the ϵ-success is possible. These functions cannot be written as neural
networks, so we run our experiments on Envision, the domain specific language of Lokad,
where the random paths can be drawn from the differentiation of the SSA-SA form of the
language. Dropping out one of the few parameters of these functions is meaningless. We
run 1000 experiments for each configuration with Adam [110] as optimizer on T = 2000
epochs. We tested kmax = 5 and kmax = 50, and report the ϵ-success rate in Table IV.1
(respectively IV.2) for ϵ = 0.05 (ϵ = 0.01 respectively). We have not tested multiple
values of m because this parameter is strictly dependent on the function being used. We
have chosen to select one branch from each tupling node in the backpropagation graph
execution. For example, in function f1 from Example 6, when the input x is used twice
in the function, m is set to 2.

Function baseline RAD SPADkmax=5 SPADkmax=50

Ackley 12.2 % 0.1 % 2.1 % 1.6 %
Beale 70.8 % 65.2 % 67.0 % 75.2 %
Levi 0.0 % 0.7 % 2.2 % 1.4 %
Schaffer2 14.2 % 8.8 % 10.1 % 11.4 %

Table IV.1.: ϵ-success table with ϵ = 0.05. In bold, the method with the higher ϵ-success
rate for the corresponding function. On the beale and the levi functions, the
best results are obtained with SPAD. The function definitions can be found
in Appendix A.3.2.
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Function baseline RAD SPADkmax=5 SPADkmax=50

Ackley 12.2 % 0.1 % 2.1 % 1.6 %
Beale 65.4 % 58.2 % 62.7 % 70.5 %
Levi 0.0 % 0.2 % 1.7 % 1.1 %
Schaffer2 13.9 % 8.8 % 10.0 % 11.3 %

Table IV.2.: ϵ-success table with ϵ = 0.01. In bold, the method with the higher ϵ-success
rate for the corresponding function. All the ϵ-success rate are lower than in
Table IV.1 as ϵ is smaller.
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(a) kmax impact on the ϵ-success of beale func-
tion minimization, with ϵ = 0.05.
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(b) kmax impact on the ϵ-success of levi func-
tion minimization, with ϵ = 0.05.

Figure IV.10.: ϵ-success as a function of kmax. On these graphs, the higher the better.
Both experiments show an impact of kmax on the ϵ-success of the gradient
descent. On Figure IV.10a on the beale function, a bigger kmax upgrades
the optimization while it is the opposite on Figure IV.10b and the levi
function. In both cases, the better results are obtained with a version of
SPAD that outperforms the baseline and RAD.

As gradient methods are not well-suited on these functions, we did not expect good
results. However, we can observe that when the gradient expression in the form of a
sum is particularly adapted, as in the Beale function, SPAD yields better results. In
more challenging cases, such as the Levi function, the baseline never manages to find a
minimum, whereas using SPAD allows, albeit in a limited number of cases, to find the
minimum.
In Figure IV.10, we present the ϵ-success rate for varying values of kmax on the beale and
the levi functions. In these examples the proposed method SPAD (with the appropriate
kmax) outperforms the baseline and RAD, which is very promising.
It also demonstrates that there is no universal optimal value of kmax, as the performance
seems to increase with kmax on the beale function but decreases on the levi function.
The choices we made to conduct these experiments are motivated by two observations.
Firstly, The choice of the functions in this section is motivated by the fact that they
employ several times their input variables. As highlighted in Section IV.4.2, it is necessary
to use SPAD. Secondly, although SPAD is promoted as a way to reduce overfitting, this
concept is not relevant in optimization problems where the goal is to find the optimal
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parameters that maximize the objective function, without considering factors such as the
model’s generalization capabilities.

IV.5.2. Deep learning

We conducted experiments on the MNIST and CIFAR10 datasets and compared SPAD
with RAD, the standard stochastic gradient estimator and the dropout technique. We
use the same experimental framework described in [114], which does not include any
early stopping. Doing so would increase the memory requirements that we want to avoid.
However such a framework may lead to overfitting, which we aim to mitigate. The
objective of our approach is to maintain the learning quality while reducing the memory
peak compared to traditional SGD.
Because of the large number of parameters in the networks used, drawing a single path
in the backpropagation graph would result in negligible updates. Instead, we think in
terms of the fraction of the path to be drawn and, as a result, we conducted experiments
in which 10% of the network is updated at each iteration. To rephrase it, we draw m sets
of random paths, with each set covering 10% of the network. In contrast, the theoretical
version of SPAD generates m random paths, with each path covering 1

N% of the model.
We applied the same proportion (i.e. 10%) when executing dropout runs.
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made of 4 linear layers with Rectified Lin-
ear Unit activation.
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Figure IV.11.: Accuracy on test versus memory peak tradeoff. The displayed memory is
a fraction of the biggest memory peak of the baseline, the same is used for
every run. The superior results are located in the upper left quadrant of
the graph, indicated by the green color.

Figure IV.11 displays the two metrics we aim to optimize, i.e. the final accuracy on
the testing dataset and the memory peak in % required by the training. The objective
is to get higher accuracy on testing with the lowest memory consumption, i.e. ending
in the green zone. A run is considered as strictly better than another if it reaches
higher accuracy with less memory. Otherwise one cannot rank two runs. On these
examples, the many variants of SPAD are competitive with the baseline and RAD, and
it achieves strictly superior results on CIFAR10. With regards to the MNIST dataset,
as shown in Figure IV.11a, none of the methods outperform the baseline, although the
differences are minimal, as every model achieves over 97% accuracy. The least accurate
results occur when kmax = 1000. This outcome is reasonable since the selected paths may
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Figure IV.12.: Learning curves of the SmallConvNet on CIFAR10. The baseline model
exhibits rapid performance improvement on the training dataset, while
its performance on the testing dataset deteriorates just as quickly. This
behavior is characteristic of overfitting, whereas the various versions of
SPAD effectively mitigate this undesired decrease in generalization.

be utilized for an excessive number of iterations and might lose relevance at a specific
stage. On IV.11b which concerns the CIFAR10 dataset, some versions of SPAD like
(kmax = m = 10) are strictly better than the baseline. Note that all the runs share
the same neural architectures, which is a Fully connected network on MNIST and a
convolutional one on CIFAR10. More details are given in A.3.3.
Concerning overfitting, detailed results on the CIFAR10 dataset are presented in Figure
IV.12, while more details on the MNIST dataset are given in the appendices. They tend to
confirm that our method effectively reduces overfitting compared to the baseline. While
the training loss of the baseline quickly decreases during the first iterations, its test loss
quickly increases. On the contrary, SPAD slowly decreases its loss on the training dataset
and its testing loss increases slowly compared to the baseline. This observation highlights
the similarities between the process of randomly drawing paths during backpropagation
and the dropout technique. Turning off a fraction of the network, on the forward pass for
dropout and on the backpropagation for SPAD, tends to reduce overfitting. The dropout
runs reach the highest test accuracy, but with a significant memory consumption.
This approach effectively mitigates overfitting, as the testing loss increases at a much
slower rate compared to other heuristics in Figures A.6 and A.7 from the appendices.
Incorporating random matrix injections could prove highly beneficial for such learning
techniques.
The primary objective of SPAD is to minimize memory consumption. From the per-
spective of a fixed memory budget, employing SPAD liberates resources that can be
reallocated to increase the batch size, for instance. We evaluated this hypothesis by
employing the SPAD method, utilizing a batch size twice as large as that in the other
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experiments denoted by big batch in the legend of Figure IV.11b. While this approach
led to increased memory consumption, it also resulted in increasing overfitting, exhibiting
behavior akin to the baseline in both training and testing data sets. This observation
is consistent with the findings of [152], which assert that large batch training methods
are more prone to overfitting compared to the same network trained using smaller batch
sizes.
Other heuristics We have tested other probability distribution construction over the
gθ,i like

It ∼Dϵ
sqkmax

with st = argmin
p∈Pm

∥∇fθ − gθ,p∥ (IV.10)

Nevertheless, none of the other tested methods yielded superior results compared to
SPAD. Furthermore, SPAD exhibits the lowest memory consumption, as it eliminates
the need to compute the full gradient even once, in contrast to the heuristic presented in
Equation IV.10.

Implementation trick

The following paragraph is very Pytorch-specific.
The deep learning experiments were performed using Pytorch. The main challenge was
persisting tensors from the backward pass to the forward pass. The random paths P d

k to
be selected for multiple iterations were chosen during the gradient calculation in the back-
ward pass. Although intermediate tensors can be saved using the save for backward1

function, there is no similar function for saving tensors from the forward pass to the
backward pass. To address this issue, we passed the factorized version of P d

k as a ghost
input to the forward pass, manually updated its version in each of the kmax iterations
into the corresponding gradient, and finally replaced P d

k with the value artificially stored
in its gradient.

Conclusion and perspectives

From the perspective of deep learning, SPAD can be regarded as a combination of dropout
and layer freezing within a neural network. By drawing backpropagation paths, our
method proposes a similar technique to dropout for any gradient based model. It is
based on reverse mode automatic differentiation of Static Single Assignment - Single
Access languages.
Moreover, our main idea is to draw more frequent examples that have a bigger impact
on the loss minimization. Concerning this code’s stochasticity, our result shows the
advantages of a non uniform probability distribution. This is aligned with multiple works
[153, 154] that use non-uniform distributions on the observations and outperforms the
uniform one.
Table IV.3 summarizes the construction of gradient stochasticity based on the chosen
stochasticity. The sampling process can be conducted at the observation or code level,
with uniform or non-uniform distribution.
An interesting future work would be about non-uniform distributions on the observations
and on the code, which could hopefully get better learning results without increasing

1torch.autograd.function.FunctionCtx.save for backward
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Granularity GD SGD RAD SPAD [153]

Observations NO Uniform Uniform Uniform Non-Uniform
Code NO NO Uniform Non-Uniform NO

Table IV.3.: Small review of the stochasticity origin of gradient estimators.

the training memory needs. Such direction would help parameters updates on embed-
ded artificial intelligence, which would open many industrial applications, like embedded
machine learning on devices with constrained computational resources.
All of these advancements promote the implementation of embedded machine learning
on devices with constrained computational resources, thereby enhancing their utility and
efficiency.
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Conclusion

Summary

In the introduction we presented the context of this PhD: this PhD was funded and
initiated by the french company Lokad in order to unlock differentiable programming on
its own domain specific language Envision.
In Chapter I we have explored the topic of differentiating relational queries. We started
by discussing differentiation techniques and automatic differentiation, highlighting their
significance in the context of relational data. We also examined existing automatic differ-
entiation systems and their applicability to relational queries. Next, we delved into the
specifics of relational queries, considering their industrial context and the unique charac-
teristics of relational data. We explored the concepts of relational algebra and queries,
emphasizing the need for automatic differentiation in this domain. We surveyed exist-
ing approaches to automatic differentiation on relational queries. We then introduced
the concept of differentiable programming on relational queries. We defined relevant
notations and discussed how a loss query can be expressed both relationally and math-
ematically. We introduced the TOTAL JOIN operator and PolyStar as key components
in differentiable programming on relational queries. To facilitate the implementation and
application of differentiable programming on relational queries, we introduced a dedicated
programming language called Adsl. We presented the language and its features, including
Static Single Assignment form and Single Access. We also discussed the equivalence of
Adsl and Wengert lists and the induced automatic differentiation capabilities of Adsl.
Furthermore, we showcased the application of differentiable programming on relational
queries through Envision, a domain-specific language. We highlighted the prominence
of differentiable programming as a first-class citizen in Envision and demonstrated its
utility through the concept of relational linear regression. Additionally, we presented a
real-world example involving retail forecasting and discussed the mathematical insights
gained from the application.
In Chapter II we have presented SGD and its applications in machine learning opti-
mization. We discussed the convergence properties of SGD and its benefits in terms
of computational efficiency. We also examined the use of adaptive optimizers, such as
Adam, in conjunction with SGD for improved convergence and generalization. Further-
more, we discussed the application of stochasticity and gradient descent techniques to
relational data, specifically through PolyStar. These findings provide a foundation for
future research in optimizing and exploring complex relational models.
In Chapter III we addressed the challenges of incorporating categorical features in ma-
chine learning models. We discussed the limitations of traditional one-hot-encoding meth-
ods and their impact on gradient descent optimization. To overcome these issues, we
proposed a novel solution called the Gradient Estimator for Categorical Features. We
provided a comprehensive definition of GCE and proved its unbiasedness, demonstrating
its effectiveness in accurately estimating gradients for categorical features. We applied
GCE to relational linear regression and conducted experiments using both deep learn-
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ing models and public datasets. The experimental results showed the superiority of
our approach in handling categorical features, both in terms of model performance and
convergence speed. We also validated the effectiveness of GCE in real-world scenarios,
showcasing its applicability in production environments. Furthermore, we explored the
initialization of categorical models, presenting a two-feature example and generalizing it
to singular value decomposition.
In Chapter IV we investigated the impact of gradient code stochasticity on memory con-
sumption, overfitting, and optimization performance in gradient-based models. We first
addressed the issue of memory consumption and presented checkpointing techniques to
alleviate the burden of storing intermediate activations during reverse mode automatic
differentiation. We presented the integration of checkpointing in Adsl and discussed its
benefits in terms of memory efficiency. Next, we focused on combating overfitting, a
common challenge in deep learning. We explored the dropout technique as a regular-
ization method to prevent overfitting and improve generalization performance. We then
delved into the concept of sample random paths and their implications for gradient-based
optimization. We discussed gradient code stochasticity and its role in diversifying the
training process by sampling different paths in the backpropagation algorithm. Fur-
thermore, we introduced the Selective Path Automatic Differentiation technique, which
allows us to move beyond the uniform distribution of backpropagation paths. We pre-
sented the implementation details of SPAD and highlighted its potential for enhancing
optimization performance and generalization. The experimental results showcased the
effectiveness of the proposed techniques. We evaluated various optimization functions
and conducted experiments using deep learning models. The results demonstrated the
benefits of memory-efficient strategies, dropout regularization, and sample random paths
in improving training efficiency, reducing overfitting, and achieving better generalization.

Perspectives

I strongly think that the work presented in this PhD holds great promise for future
developments in several areas.
Firstly, beyond the strong theoretical set up founded by the introduction of Adsl, the
introduction of differentiable programming to Envision has demonstrated its practical
feasibility and usefulness on relational programming languages. This should encourage
future work in similar directions, such as extending this approach to SQL, which is the
most widely used relational language. Undoubtedly, addressing this issue may require
overcoming additional challenges, as the PolyStar could be more difficult to define in this
language due to the numerous intermediate tables present in its queries. Nonetheless, the
benefits provided by our implementation demonstrate that the effort is well worth it. The
extension of differentiable programming to widely used relational programming languages
will enable domain experts to create bespoke machine learning models more effectively.
By facilitating their direct involvement in the development of forecasting engines, they
will transition from passive observers to active contributors in the process.
Secondly, categorical data has been relatively neglected by the machine learning commu-
nity, and we hope that the proposed GCE approach will encourage greater use of such
data and improve the effectiveness of machine learning tasks involving it. Additionally,
we anticipate that the adoption of more categorical models, such as the introduced rela-
tional linear regression, will continue to increase due to their high level of interpretability.
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We believe that interpretability will become a critical aspect for future machine learning
developments in domains that have significant impact on our society and its economy like
health or supply chain.
Thirdly, SPAD investigates an intriguing aspect of gradient stochasticity rooted in the
code itself, which, to our knowledge, has been largely underestimated. Exploring non-
uniform probability distributions on backpropagation paths raises questions about the
potential for coupling it with non-uniform distributions on observations, which has al-
ready been addressed independently.
These future research directions can be regarded as independent, but they all pertain to
differentiable programming, which, in my opinion, should be considered holistically. The
introduction of SPAD, based on compilation design choices made during the construction
of Adsl, supports this perspective, rather than addressing each problem individually
without considering the big picture.

126



Acknowledgements

I would like to express my gratitude to my thesis advisors, Thierry Paquet and Maxime
Berar, for their guidance throughout my PhD journey. Their insightful feedback has been
instrumental in shaping the direction and the quality of this work.
I am also grateful to Victor Nicollet, CTO of Lokad, who provided invaluable feedback
and guidance from the industry side. I wish to every CIFRE PhD student to have such
an advisor in his company.
I also thank Joannes Vermorel, CEO of Lokad, whose constant stimulation and vision on
differentiable programming played a crucial role in this work.
I would like to extend my thanks to Vincent Berthoux for his contribution to the im-
plementation of differentiable programming in Envision, and to Gaëtan Delétoille and
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[11] M. E. Schüle, F. Simonis, T. Heyenbrock, A. Kemper, S. Günnemann, and T. Neu-
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[37] L. Hascoët and V. Pascual, “The tapenade automatic differentiation tool: Princi-
ples, model, and specification,” ACM Trans. Math. Softw., vol. 39, pp. 20:1–20:43,
2013.

[38] M. Innes, “Don’t unroll adjoint : Differentiating ssa-form programs,” ArXiv,
vol. abs/1810.07951, 2018.

[39] B. van Merrienboer, O. Breuleux, A. Bergeron, and P. Lamblin, “Automatic dif-
ferentiation in ml: Where we are and where we should be going,” in Advances
in Neural Information Processing Systems (S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31, Curran Associates,
Inc., 2018.

130



[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
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A. Appendices

A.1. Envision

            

execution        C#
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compilation

F#
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Supply 
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SgdObject
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Figure A.1.: Description of pipeline implemented at Lokad. The supply chain scientist
(Lokad employee) first encodes their designed model using Envision, a pro-
gramming language specifically designed for this purpose. The Envision code
is then compiled into multiple intermediate languages developed in F#. As
part of this compilation process, the model is translated into Adsl, which al-
lows for the creation of its derivative. The inclusion of the derivative within
Adsl is a fundamental aspect of its design. Finally, the query and its deriva-
tive are made accessible to an object that manages the parameter updates
by executing them on available data.
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/// s i z e o f the f u t u r e Observa t ions t a b l e .
n = 100

/// Creation o f the Observa t ions t a b l e .
/// I t conta ins on ly one vec t o r : Observa t ions .N,
/// wi th va l u e s from 1 to 100.
t ab l e Observat ions = extend . range (n)

/// Creation o f the ca tegory vec to r thanks
/// to the use o f a random func t i on .
/// Observat ions . Category has 3 p o s s i b l e va l u e s : ”A” , ”B” or ”C”.
Observat ions . Category = match random . i n t e g e r (3 in to Observat ions ) with

1 −> ”A”
2 −> ”B”
3 −> ”C”

/// Creation o f the X vec to r in the Observat ions t a b l e .
/// Observat ions .X va l u e s are between 0.0 and 1 . 0 .
Observat ions .X = random . uniform (0 in to Observations , 1)

/// Creation o f s c a l a r v a r i a b l e s
b0 = 1 .5
aA = 1.8
aB = 0 .7
aC = 1 .1

/// Creation o f the Y vec to r in the Observat ions t a b l e .
/// The s l o p e used depends on the Observat ions . Category .
Observat ions .Y = match Observat ions . Category with

”A” −> aA ∗ Observat ions .X + b0
”B” −> aB ∗ Observat ions .X + b0
”C” −> aC ∗ Observat ions .X + b0

/// Creation o f the Upstream t a b l e .
/// Each l i n e o f the Upstream t a b l e corresponds to one and
/// only one element o f the s e t o f va l u e s o f Observa t ions . Category .
t ab l e Upstream [ Category ] = by Observat ions . Category

141



/// The S t o cha s t i c Gradient Descent b l o c k .
/// This b l o c k
/// − c r ea t e s the parameters 'Upstream . a ' and ' b ' ,
/// − performs sgd on 10 epochs
/// ( i e 10 passes on the Observat ions t a b l e )
/// wi th a batch o f 1 and Adam as opt imizer ,
/// − re turns the updated va l u e s o f the
/// parameters 'Upstream . a ' and ' b ' .
au t o d i f f Observat ions epochs : 10 with

/// Parameters i n i t i a l i a z t i o n .
params Upstream . a auto
params b auto

/// Re l a t i ona l .
a = Upstream . a
X = Observat ions .X
Y = Observat ions .Y

/// Mathematical .
p r ed i c t i on = a ∗ X + b
e r r o r = p r ed i c t i on − Y

/// Construct ion o f the l o s s AT THE OBSERVATIONS LEVEL.
re turn e r r o r ˆ2

/// Reconstruc t ion o f the es t imated Y on the Observat ions data .
Observat ions . EstimatedY = Upstream . a ∗ Observat ions .X + b0

Upstream . aTrue = match Upstream . Category with
”A” −> aA
”B” −> aB
”C” −> aC

/// Disp lay .
show s c a l a r ”Est imation o f the i n t e r c e p t ( b0=1.5) ” c1d1 with b

show tab l e ”Upstream” a1b3 with
Upstream . Category
Upstream . a as ”Estimated s l ope ”
Upstream . aTrue as ”Real s l ope ”

show tab l e ”Observat ions ” a4d7 with
Observat ions . Category as ”Category”
Observat ions .X as ”X”
Observat ions .Y as ”Y”
Observat ions . EstimatedY as ”Estimated Y”

Listing A.1: Extension of Listing I.13. This code is standalone and can be executed on
https://try.lokad.com/s/Peseux-PhD-RLRegression. Execution of such
code results in run details presented in Figure A.2
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Figure A.2.: Envision run details of Listing A.1 execution in Lokad environment. The
red curve represent the evolution of the loss function over epochs.

/// s i z e o f the f u t u r e Observa t ions t a b l e
n = 1000
/// Creation o f the Observa t ions t a b l e .
/// I t conta ins on ly one vec t o r : Items . Id , wi th va l u e s from 1 to 1000
t ab l e Items [ Id ] = extend . range (n)

/// Creation o f the ca tegory v e c t o r s thanks the use
/// o f a random func t i on .
Items . Store = match random . i n t e g e r (3 in to Items ) with

1 −> ”Par i s ”
2 −> ”Rome”
3 −> ” Ber l i n ”

Items . Color = match random . i n t e g e r (2 in to Items ) with
1 −> ” red ”
2 −> ” blue ”

Items . S i z e = match random . i n t e g e r (4 in to Items ) with
1 −> ”S”
2 −> ”M”
3 −> ”L”
4 −> ”XL”

Items . Group = match random . i n t e g e r (4 in to Items ) with
1 −> ”A”
2 −> ”B”
3 −> ”C”
4 −> ”D”
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/// Creation o f the upstream t a b l e s .
/// Each l i n e o f the Upstream t a b l e corresponds to one
/// and only one element o f the s e t o f
/// va l u e s o f Observa t ions . Category .
t ab l e Store [ Store ] = by Items . Store
t ab l e Color [ Color ] = by Items . Color
t ab l e S i z e [ S i z e ] = by Items . S i z e
t ab l e Group [ Group ] = by Items . Group

/// Creation o f the date dimension .
/// This i s necessary on ly because we dea l wi th s y n t h e t i c data .
s tar tDate = date (2019 ,1 ,1 )
endDate = date (2023 ,1 ,1 )
keep span date = [ s tar tDate . . endDate ]
Week .WeekNumber = (Week . week − week ( s tar tDate ) ) mod 52
tab l e WeekNumbers [WeekNumbers ] max 52 = by Week .WeekNumber

/// Creation o f the upstream−cros s t a b l e s
t ab l e GroupWN max 52k = c r o s s (Group , WeekNumbers )
t ab l e ItemsWeek smal l 1m = c ro s s ( Items , Week)

/// Ensure proper broadcas t between t a b l e s .
ItemsWeek . Group = Items . Group
ItemsWeek .WeekNumbers = Week .WeekNumbers

/// Syn the t i c c r ea t i on o f the o b j e c t i v e v ec t o r ItemsWeek . Target .
/// The model used in the a u t o d i f f b l o c k be low
/// i s p e r f e c t l y s u i t e d f o r the s y n t h e t i c data .
/// In p r a c t i c e o f course , i t does not f i t t h a t w e l l .
mini = 0 .1
maxi = 5 .0
Store . Factor = random . uniform (mini i n to Store , maxi )
Color . Factor = random . uniform (mini i n to Color , maxi )
S i z e . Factor = random . uniform (mini i n to Size , maxi )
GroupWN. Factor = random . uniform (mini i n to GroupWN, maxi )

ItemsWeek . Factors =
Store . Factor ∗
Color . Factor ∗
S i z e . Factor

/// Noise add i t i on to avoid a p e r f e c t f i t t i n g .
ItemsWeek . Target =

ItemsWeek . Factors ∗
GroupWN. Factor ∗
random . normal (1 in to ItemsWeek , 0 . 2 )
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ep s i l o n = 0.01
/// The S t o cha s t i c Gradient Descent b l o c k .
/// This b l o c k
/// − c r ea t e s the parameters ' Store . t h e t a ' ,
/// 'Color . t h e t a ' ,
/// ' S i ze . t h e t a ' ,
/// 'GroupWN. t h e t a ' .
/// − performs sgd on 5 epochs ( i e 10 passes on the Items t a b l e )
/// wi th a batch o f 1 and Adam as op t imi ze r .
/// − re turns the updated va l u e s o f the parameters
/// ' Store . t h e t a ' ,
/// 'Color . t h e t a ' ,
/// ' S i ze . t h e t a ' ,
/// 'GroupWN. t h e t a ' .
au t o d i f f Items epochs : 5 with

params Store . theta in [ e p s i l o n . . ] auto
params Color . theta in [ e p s i l o n . . ] auto
params S i z e . theta in [ e p s i l o n . . ] auto
params GroupWN. theta in [ e p s i l o n . . ] auto

/// Re l a t i ona l .
/// The f o l l ow i n g b roadcas t s are p o s s i b l e
/// as Store , Color , Size , Group are upstream t a b l e s .
thetaSt = Store . theta
thetaC = Color . theta
the taS i = S i z e . theta
WeekNumbers . thetaGroup = GroupWN. theta
/// Mathematical
Week . Pred i c t i on = thetaSt ∗ thetaC ∗

the taS i ∗ WeekNumbers . thetaGroup

/// Re l a t i ona l
Week . Pred i c t i on = Week . Pred i c t i on
/// Mathematical
Week . Error = Week . Pred i c t i on − ItemsWeek . Target
Week . Error2 = Week . Error ˆ2

/// Construct ion o f the l o s s AT THE OBSERVATIONS LEVEL
l o s s = sum(Week . Error2 )
re turn l o s s
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/// Reconstruc t ion o f the es t imated vec to r on the Observat ions data .
ItemsWeek . Fi t = each Items

thetaSt = Store . theta
thetaC = Color . theta
the taS i = S i z e . theta
Week . thetaGroup = GroupWN. theta
/// Mathematical
Week . Pred i c t i on = thetaSt ∗ thetaC ∗

the taS i ∗ Week . thetaGroup

/// Re l a t i ona l
Week . Pred i c t i on = Week . Pred i c t i on
return Week . Pred i c t i on

/// Disp lay
ItemsWeek . s l i c e = s l i ceDashboard ( t ext ( ItemsWeek . Id ) ) by ItemsWeek . Id

show l i n e c h a r t ”ItemsWeek” a1f4 s l i c e s : S l i c e with
sum( ItemsWeek . Fi t ) as ” F i t t i n g ” { c o l o r : #5F7DDF}
sum( ItemsWeek . Target ) as ”Target ” { c o l o r : ”#7e7”}

group by monday( ItemsWeek .Week)

Listing A.2: Extension of forecasting model from Equation I.2. This code
is standalone and can be executed on https://try.lokad.com/s/

Peseux-PhD-ForecastinRetail. Execution of such code results in run de-
tails presented in Figure A.3
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Figure A.3.: Envision run details of Listing A.2 execution in Lokad environment. The
red curve represent the evolution of the loss function over epochs. The data
being synthetic, optimization is very smooth. The loss does not decrease to
0 due to the noise addition in data creation.

.
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A.2. GCE

A.2.1. SVD

import numpy as np
n = 3

def e r r o r (M, A) :
return np .sum(np . square (M−A))

A = np . array ( [ [ 9 . , 3 . , 6 . ] ,
[ 8 . , 8 . , 6 . ] ,
[ 0 . , 3 . , 7 . ] ] )

U, d , V = np . l i n a l g . svd (A, f u l l ma t r i c e s=True )
U = np . t ranspose (U)

print ( ”d : ” )
print (d)
print ( ”\nU: ” )
print (U)
print ( ”\nV: ” )
print (V)

fu l lDecompos i t i on = d [ 0 ] ∗ np . outer (U[ 0 ] , V[ 0 ] ) + \
d [ 1 ] ∗ np . outer (U[ 1 ] , V[ 1 ] ) + \
d [ 2 ] ∗ np . outer (U[ 2 ] , V[ 2 ] )

approxs = [ d [ i ] ∗ np . outer (U[ i ] , V[ i ] ) for i in range (n ) ]
print ( ” e r r o r svd : %f ” % e r r o r ( fu l lDecompos i t ion , A) )
for i in range (n ) :

print ( ” approximation %i e r r o r : %f ” % ( i , e r r o r ( approxs [ i ] , A) ) )

Listing A.3: Construction of the singular value decomposition of a square matrix based
on the numpy library.

A.2.2. Deep learning

Dataset SGD SGD & GCE Adagrad Adagrad & GCE Adam Adam & GCE

ACI 0.48 ± 0.24 0.24 ± 0.01 0.48 ± 0.23 0.21 ± 0.01 0.60 ± 0.24 0.46 ± 0.22
DGK 0.56 ± 0.35 0.12 ± 0.01 0.60 ± 0.35 0.12 ± 0.01 0.41 ± 0.36 0.35 ± 0.35
Forest Cover 1.98 ± 0.02 1.95 ± 0.01 1.98 ± 0.02 1.44 ± 0.04 1.98 ± 0.04 1.95 ± 0.03
KDD99 1.75 ± 0.20 0.93 ± 0.12 1.80 ± 0.17 0.07 ± 0.03 1.94 ± 0.19 1.63 ± 0.19
Used Cars 1.07 ± 0.06 0.98 ± 0.01 1.08 ± 0.07 0.99 ± 0.01 1.10 ± 0.08 1.02 ± 0.04

Table A.1.: Results with mlp and batch of 32 (RMSE)
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Dataset SGD SGD & GCE Adagrad Adagrad & GCE Adam Adam & GCE

ACI 0.49 ± 0.10 0.20 ± 0.01 0.48 ± 0.14 0.19 ± 0.01 0.49 ± 0.14 0.19 ± 0.01
DGK 0.45 ± 0.19 0.12 ± 0.01 0.50 ± 0.20 0.12 ± 0.01 0.52 ± 0.24 0.14 ± 0.01
Forest Cover 2.01 ± 0.04 1.18 ± 0.01 2.01 ± 0.04 1.03 ± 0.01 2.00 ± 0.04 1.05 ± 0.01
KDD99 1.81 ± 0.10 0.07 ± 0.01 1.84 ± 0.08 0.01 ± 0.01 1.82 ± 0.12 0.04 ± 0.01
Used Cars 1.23 ± 0.10 1.02 ± 0.01 1.20 ± 0.09 1.04 ± 0.01 1.18 ± 0.05 1.03 ± 0.01

Table A.2.: Results with resnet and batch of 32 (RMSE)

Dataset SGD SGD & GCE Adagrad Adagrad & GCE Adam Adam & GCE

ACI 0.45 ± 0.25 0.25 ± 0.02 0.44 ± 0.23 0.20 ± 0.03 0.53 ± 0.23 0.41 ± 0.22
DGK 0.32 ± 0.32 0.11 ± 0.01 0.43 ± 0.38 0.12 ± 0.01 0.43 ± 0.38 0.29 ± 0.30
Forest Cover 2.00 ± 0.03 1.98 ± 0.02 1.99 ± 0.03 1.54 ± 0.06 1.99 ± 0.03 1.97 ± 0.02
KDD99 1.84 ± 0.14 1.32 ± 0.11 1.85 ± 0.23 0.13 ± 0.08 1.95 ± 0.19 1.74 ± 0.20
Used Cars 1.10 ± 0.06 1.01 ± 0.01 1.11 ± 0.09 1.01 ± 0.01 1.11 ± 0.10 1.05 ± 0.06

Table A.3.: Results with mlp and batch of 64 (RMSE)

Dataset SGD SGD & GCE Adagrad Adagrad & GCE Adam Adam & GCE

ACI 0.54 ± 0.12 0.21 ± 0.01 0.55 ± 0.11 0.17 ± 0.01 0.57 ± 0.14 0.16 ± 0.01
DGK 0.45 ± 0.12 0.11 ± 0.01 0.52 ± 0.17 0.12 ± 0.01 0.44 ± 0.16 0.13 ± 0.01
Forest Cover 2.02 ± 0.05 1.37 ± 0.03 1.99 ± 0.03 1.02 ± 0.01 2.02 ± 0.04 1.06 ± 0.01
KDD99 1.81 ± 0.15 0.12 ± 0.01 1.87 ± 0.07 0.02 ± 0.01 1.89 ± 0.09 0.06 ± 0.01
Used Cars 1.13 ± 0.06 0.99 ± 0.01 1.15 ± 0.07 1.02 ± 0.01 1.20 ± 0.17 1.01 ± 0.01

Table A.4.: Results with resnet and batch of 64 (RMSE)

Dataset SGD SGD & GCE Adagrad Adagrad & GCE Adam Adam & GCE

ACI 0.45 ± 0.22 0.32 ± 0.16 0.46 ± 0.23 0.25 ± 0.02 0.48 ± 0.23 0.42 ± 0.22
DGK 0.58 ± 0.37 0.30 ± 0.30 0.58 ± 0.35 0.12 ± 0.01 0.74 ± 0.29 0.49 ± 0.30
Forest Cover 1.98 ± 0.03 1.97 ± 0.02 1.99 ± 0.03 1.60 ± 0.07 1.99 ± 0.02 1.97 ± 0.02
KDD99 1.80 ± 0.19 1.50 ± 0.15 1.89 ± 0.19 0.45 ± 0.47 1.80 ± 0.18 1.69 ± 0.18
Used Cars 1.16 ± 0.09 1.03 ± 0.02 1.12 ± 0.08 1.02 ± 0.01 1.13 ± 0.11 1.08 ± 0.09

Table A.5.: Results with mlp and batch of 128 (RMSE)

Dataset SGD SGD & GCE Adagrad Adagrad & GCE Adam Adam & GCE

ACI 0.47 ± 0.12 0.24 ± 0.01 0.48 ± 0.15 0.19 ± 0.01 0.56 ± 0.09 0.19 ± 0.01
DGK 0.50 ± 0.19 0.11 ± 0.01 0.47 ± 0.18 0.12 ± 0.01 0.39 ± 0.13 0.13 ± 0.01
Forest Cover 2.00 ± 0.03 1.59 ± 0.02 2.00 ± 0.03 1.01 ± 0.01 2.00 ± 0.02 1.04 ± 0.01
KDD99 1.85 ± 0.15 0.22 ± 0.01 1.90 ± 0.11 0.01 ± 0.01 1.82 ± 0.13 0.08 ± 0.01
Used Cars 1.17 ± 0.05 1.02 ± 0.01 1.17 ± 0.04 1.06 ± 0.02 1.16 ± 0.07 1.03 ± 0.01

Table A.6.: Results with resnet and batch of 128 (RMSE)
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Dataset SGD SGD & GCE Adagrad Adagrad & GCE Adam Adam & GCE

ACI 0.50 ± 0.26 0.49 ± 0.25 0.50 ± 0.23 0.23 ± 0.01 0.50 ± 0.26 0.43 ± 0.23
DGK 0.34 ± 0.36 0.30 ± 0.31 0.53 ± 0.36 0.11 ± 0.01 0.50 ± 0.36 0.28 ± 0.29
Forest Cover 1.98 ± 0.03 1.98 ± 0.02 1.98 ± 0.02 1.79 ± 0.06 2.00 ± 0.03 1.97 ± 0.02
KDD99 1.84 ± 0.24 1.70 ± 0.23 1.74 ± 0.10 0.57 ± 0.33 1.88 ± 0.23 1.78 ± 0.23
Used Cars 1.08 ± 0.07 1.04 ± 0.02 1.10 ± 0.06 1.02 ± 0.01 1.11 ± 0.07 1.07 ± 0.05

Table A.7.: Results with mlp and batch of 256 (RMSE)

Dataset SGD SGD & GCE Adagrad Adagrad & GCE Adam Adam & GCE

ACI 0.54 ± 0.14 0.24 ± 0.01 0.53 ± 0.13 0.19 ± 0.01 0.52 ± 0.10 0.19 ± 0.01
DGK 0.59 ± 0.16 0.11 ± 0.01 0.50 ± 0.16 0.12 ± 0.01 0.48 ± 0.19 0.14 ± 0.01
Forest Cover 1.99 ± 0.04 1.73 ± 0.03 2.01 ± 0.02 1.03 ± 0.01 2.03 ± 0.02 1.07 ± 0.01
KDD99 1.76 ± 0.07 0.47 ± 0.04 1.80 ± 0.05 0.02 ± 0.01 1.86 ± 0.09 0.16 ± 0.02
Used Cars 1.17 ± 0.11 1.00 ± 0.01 1.17 ± 0.11 1.06 ± 0.01 1.13 ± 0.06 1.01 ± 0.01

Table A.8.: Results with resnet and batch of 256 (RMSE)

Dataset SGD SGD & GCE Adagrad Adagrad & GCE Adam Adam & GCE

ACI 0.56 ± 0.24 0.50 ± 0.24 0.55 ± 0.26 0.32 ± 0.17 0.45 ± 0.26 0.41 ± 0.24
DGK 0.54 ± 0.35 0.47 ± 0.36 0.80 ± 0.23 0.22 ± 0.11 0.51 ± 0.38 0.50 ± 0.38
Forest Cover 1.97 ± 0.02 1.97 ± 0.02 2.01 ± 0.03 1.92 ± 0.02 2.01 ± 0.03 1.99 ± 0.02
KDD99 1.82 ± 0.17 1.74 ± 0.16 1.89 ± 0.18 1.41 ± 0.17 1.85 ± 0.20 1.79 ± 0.20
Used Cars 1.10 ± 0.08 1.05 ± 0.04 1.10 ± 0.07 0.99 ± 0.03 1.11 ± 0.11 1.08 ± 0.08

Table A.9.: Results with mlp and batch of 512 (RMSE)

Dataset SGD SGD & GCE Adagrad Adagrad & GCE Adam Adam & GCE

ACI 0.47 ± 0.15 0.25 ± 0.02 0.49 ± 0.11 0.18 ± 0.01 0.54 ± 0.15 0.19 ± 0.01
DGK 0.52 ± 0.21 0.13 ± 0.01 0.60 ± 0.21 0.12 ± 0.01 0.46 ± 0.17 0.13 ± 0.01
Forest Cover 2.03 ± 0.04 1.86 ± 0.03 2.01 ± 0.04 1.02 ± 0.01 2.00 ± 0.05 1.08 ± 0.01
KDD99 1.79 ± 0.07 0.88 ± 0.03 1.84 ± 0.10 0.02 ± 0.01 1.84 ± 0.08 0.22 ± 0.04
Used Cars 1.18 ± 0.07 1.03 ± 0.01 1.15 ± 0.08 1.04 ± 0.01 1.14 ± 0.05 1.02 ± 0.01

Table A.10.: Results with resnet and batch of 512 (RMSE)

Dataset SGD SGD & GCE Adagrad Adagrad & GCE Adam Adam & GCE

ACI 0.51 ± 0.26 0.50 ± 0.26 0.46 ± 0.26 0.36 ± 0.21 0.48 ± 0.25 0.45 ± 0.25
DGK 0.42 ± 0.37 0.42 ± 0.37 0.49 ± 0.37 0.16 ± 0.06 0.59 ± 0.36 0.58 ± 0.37
Forest Cover 1.99 ± 0.03 1.99 ± 0.03 1.99 ± 0.02 1.95 ± 0.01 1.99 ± 0.03 1.98 ± 0.03
KDD99 1.83 ± 0.27 1.77 ± 0.26 1.91 ± 0.29 1.67 ± 0.30 1.82 ± 0.21 1.78 ± 0.20
Used Cars 1.08 ± 0.08 1.06 ± 0.06 1.19 ± 0.13 1.08 ± 0.08 1.09 ± 0.07 1.07 ± 0.06

Table A.11.: Results with mlp and batch of 1024 (RMSE)
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Dataset SGD SGD & GCE Adagrad Adagrad & GCE Adam Adam & GCE

ACI 0.53 ± 0.13 0.32 ± 0.07 0.51 ± 0.10 0.18 ± 0.01 0.54 ± 0.15 0.19 ± 0.01
DGK 0.48 ± 0.20 0.18 ± 0.04 0.44 ± 0.14 0.13 ± 0.01 0.48 ± 0.19 0.15 ± 0.01
Forest Cover 2.00 ± 0.04 1.88 ± 0.04 2.01 ± 0.04 1.04 ± 0.01 2.03 ± 0.04 1.13 ± 0.01
KDD99 1.80 ± 0.10 1.12 ± 0.09 1.86 ± 0.10 0.05 ± 0.01 1.81 ± 0.06 0.32 ± 0.07
Used Cars 1.11 ± 0.02 1.05 ± 0.01 1.19 ± 0.09 1.03 ± 0.01 1.12 ± 0.03 1.01 ± 0.01

Table A.12.: Results with resnet and batch of 1024 (RMSE)

A.3. SPAD

A.3.1. Checkpointing

Let’s consider the function f :

f ∶ R3 Ð→ R
θ,w1,w2 ↦ w2 ×w1 × θ

The execution of its gradient based on RECOMPUTE-ALL strategy is presented in Figure
A.4.
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Operations Data available

[θ,w1,w2]
h1 ← w1 × θ

[θ,w1,w2, h1]
h2 ← w2 × h1

[θ,w1,w2,��h1, h2]
h2 ← 1.0

[θ,w1,w2,��h2, h2]
h1 ← h2 ×w2

[θ,w1,w2, h2, h1]
h1 ← w1 × θ (h1 was not available to compute w1)

[θ,w1,w2, h2, h1, h1]
w2 ← h2 × h1

[θ,w1,w2,��h2, h1,��h1,w2]
w1 ← h1 × θ

[θ,w1,w2,��h1,w2,w1]
θ ← h1 ×w1

[θ,w1,w2,w2,w1, θ]

Figure A.4.: Execution of reverse mode automatic differentiation of f using the
RECOMPUTE-ALL checkpointing strategy. This example deals with
scalars but the exact same logic would apply with matrices as inputs of
f , in which case the memory consumption may be an issue. Additionally, as
the number of inputs (or the depth of the network in case of matrix multi-
plication) increases, the memory savings achieved by this technique become
more significant.

A.3.2. Optimization functions

Ackley

ackley(x, y) = −20 exp [−0.2
√
0.5 (x2 + y2)] exp [0.5 (cos 2πx + cos 2πy)] + e + 20.

Beale

beale(x, y) = (1.5 − x + xy)2 + (2.25 − x + xy2)2 + (2.625 − x + xy3)2 .

Levi
levi(x, y) = sin2 3πx + (x − 1)2 (1 + sin2 3πy) + (y − 1)2 (1 + sin2 2πy) .
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Schaffer2

schaffer2(x, y) = 0.5 +
sin2 (x2 − y2) − 0.5

[1 + 0.001 (x2 + y2)]2
.
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(a) kmax on ackley function
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(b) kmax on schaffer2 function

Figure A.5.: ϵ-success in function of kmax. see Figure IV.11 for more context.

A.3.3. Deep learning results

Architecture

The architectures used are directly taken from [114]. The fully-connected architecture on
MNIST consists of:

1. Input: 784-dimensional flattened Image

2. Linear layer with 300 neurons (+ bias) (+ ReLU)

3. Linear layer with 300 neurons (+ bias) (+ ReLU)

4. Linear layer with 300 neurons (+ bias) (+ ReLU)

5. Linear layer with 10 neurons (+ bias) (+ softmax)

The convolutional architecture on CIFAR consists of:

1. Input: 3 × 32 × 32-dimensional Image

2. 5×5 convolutional layer with 16 feature maps (+ 2 zero-padding) (+ bias) (+ ReLU)

3. 5×5 convolutional layer with 32 feature maps (+ 2 zero-padding) (+ bias) (+ ReLU)

4. 2 × 2 average pool 2-d

5. 5×5 convolutional layer with 32 feature maps (+ 2 zero-padding) (+ bias) (+ ReLU)

6. 5×5 convolutional layer with 32 feature maps (+ 2 zero-padding) (+ bias) (+ ReLU)

7. 2 × 2 average pool 2-d (+ flatten)

8. Linear layer with 10 neurons (+ bias) (+ softmax)
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Results
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Figure A.6.: Full train/test curves and memory consumption per iteration on MNIST.

On the MNIST dataset, the dropout backpropagation techniques perform slightly worse
than the baseline and dropout. We do not observe any overfitting in this task, as shown in
Figure A.6, where the test accuracy does not decrease over the iterations even though this
data is never used for updating the parameters. In contrast, on the CIFAR10 dataset
(Figure A.7), we observe that while training accuracies consistently increase, the test
accuracies tend to decrease at some point for many techniques. This is especially true
for the baseline, but not for the dropout technique. Dropout backpropagation techniques
help mitigate overfitting, as notably highlighted by the evolution of the testing loss.
Different versions of SPAD provide an interesting range between the baseline and dropout
performance.
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Figure A.7.: Full train/test curves and memory consumption per iteration on CIFAR10.
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