
Received 7 September 2023, accepted 21 October 2023, date of publication 30 November 2023,
date of current version 8 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3338367

Selective Path Automatic Differentiation: Beyond
Uniform Distribution on Backpropagation Dropout
PAUL PESEUX 1,2, MAXIME BERAR1, THIERRY PAQUET 1, AND VICTOR NICOLLET2
1Laboratoire d’Informatique, du Traitement de l’Information et des Systèmes (LITIS), 76800 Saint Étienne du Rouvray, France
2Lokad, 75013 Paris, France

Corresponding author: Paul Peseux (paul.peseux@gmail.com)

This work was supported in part by the University of Rouen; and in part by Lokad, a French company.

ABSTRACT This paper introduces Selective Path Automatic Differentiation (SPAD), a novel approach to
reducing memory consumption and mitigating overfitting in gradient-based models for embedded artificial
intelligence. SPAD extends the existing Randomized Automatic Differentiation, proposed by Oktay et al and
which draws random paths through the backpropagation graph with matrix injection, by enabling alternative
probability distributions on the backpropagation graph, thereby enhancing learning performance and memory
management. In a specific iteration, SPAD evaluates and ranks multiple paths within the backpropagation
graph. Over subsequent iterations, it preferentially follows these higher-ranked paths. This work also presents
a compilation-based technique allowing model-agnostic access to random paths, ensuring generalizability
across various model architectures, not restricted to deep models. Experimental evaluations conducted across
various optimization functions demonstrate an enhanced minimization performance when employing SPAD.
Additionally, deep learning experiments with SPAD notably mitigate overfitting, offering benefits akin to
those of traditional dropout methods, but with a concomitant decrease in memory usage. We conclude by
discussing the unique stochasticity implications of our work and the potential for it to augment other stochastic
techniques in the field.

INDEX TERMS Gradient estimation, memory consumption, deep learning, dropout, embedded AI, automatic
differentiation.

I. INTRODUCTION
Artificial intelligence (AI) based on deep learning architec-
tures is being increasingly employed in various industries
and everyday life [4], [18]. The next step in this direction
is to embed AI on small devices, such as smartphones, with
limited computing resources [2]. However, one of the major
challenges in this context is the memory required to train
deep architectures based on automatic differentiation [1]. This
process is resource-intensive, particularly during the reverse
mode of automatic differentiation [22], which is essential
for training these types of deep architectures. This issue has
been inherent to neural networks since the origins of the
field. For example, Stochastic Gradient Descent (SGD) [16]
is currently the only method suitable for working on huge
datasets. Indeed it was a major breakthrough in addressing

The associate editor coordinating the review of this manuscript and

approving it for publication was Seifedine Kadry .

theoretically the splitting of large datasets into small batches
while guaranteeing convergence. Another way to reduce
memory usage is checkpointing [21] introduced as a trade-off
between execution speed and memory consumption, without
affecting gradient computations or updates. Beyond these
seminal techniques, current works [15] on embedded AI
systems still tries to limit the memory consumption with the
additional objective to not compromise the accuracy of the
model.

In addition to the resource consumption issue, overfitting of
training data is a common unwanted behavior [17] that results
in a reduced generalization power of the model. It occurs when
the model memorizes the training set and fails to generalize
to new data. To mitigate this issue, dropout was introduced in
[7] on neural networks. Dropout involves temporarily turning
off certain neurons of the model. By doing so, it prevents the
network from relying too heavily on any group of neurons and
improves the ability of the model to generalize well. Although

136552

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-9249-1174
https://orcid.org/0000-0002-2044-7542
https://orcid.org/0000-0002-1939-4842


P. Peseux et al.: SPAD: Beyond Uniform Distribution on Backpropagation Dropout

dropout reduces overfitting, current implementations do not
reduce memory consumption. Dropout is applicable to deep
learning models where parameters do not convey a specific
meaning and can be randomly deactivated. Therefore it is not
suitable for small white box models, where every parameter
has a specific purpose and meaning. Thus, dropout cannot
be applied to these models as turning off crucial parameters
is unfeasible without blasting the model, even though the
resulting regularization is a desirable feature.
An intermediate solution will be to apply dropout not

during the forward pass, but during the backpropagation of the
gradient. As an added benefit beyond generalization, dropping
off the computation stage of some parameters gradient
limits the resources consumption of the backpropagation.
Recently, this was theoretically formulated in Randomized
Automatic Differentiation (RAD) [12] that introduced a
novel gradient estimator that constructs unbiased estimates
by randomly drawing segments of the gradient code with
uniform probability to apply dropped-out backpropagation.
As a proper way to represent a model code, RAD uses
the Linearized Computational Graph (LCG) of the model,
in which the nodes represent intermediate variables and the
edges represent the mathematical operations. In a LCG, each
operation depends only on the output of the previous operation.
This simplification allows for efficient calculations, as the
operations can be computed one after the other, without the
need to store all the intermediate values. An example is given
on Figure 1.

The representation of the gradient code as a graph enables
drawing paths along the edges thus granting a new form
of gradient stochasticity. This stochasticity is based on the
gradient decomposition into the contribution of each LCG path
from the parameter θ to the output node z. This decomposition
as a sum is formalized in Equation 1 with fθ the function to
minimize with respect to θ . RAD uses a uniform probability
distribution to draw these paths. This is a valid starting point
but is just one possibility. Other distributions may lead to
better learning results. However, the concept of the optimal
distribution over the backpropagation paths is dependent on
the stage of the learning process. As the goal is to limit resource
consumption, an optimization scheme for finding the temporal
best would be counterproductive. This is why the focus will
be on finding heuristics that emphasize the most important
paths for gradient propagation.

∇θ f =
∑

θ−→z

5
zk−→zl

∂zl
∂zk

, (1)

zk −→ zl represents a directed edge connecting two nodes,
and z is the output node that represents fθ . The total gradient
is the sum of all the paths contributions.
Selective Path Automatic Differentiation (SPAD) extends

RAD by surpassing the limitations of the uniform distribution
across various tasks without increasing memory usage. During
each iteration of SGD, SPAD evaluates multiple paths within
the backpropagation graph and assigns rankings based on their

FIGURE 1. Example of the LCG of an objective function fθ from the
parameter θ to the output node z .

contribution to the overall gradient. Subsequently, it prioritizes
following these higher-ranked paths in subsequent iterations.
Moreover, while RAD proposes a technique for generating
random paths within neural networks through random matrix
injection, this work generalizes beyond deep neural models
to enable the modification of the gradient estimator for any
model architecture. The approach is based on compilation
choices made during the automatic differentiation process,
ensuring that each parameter is utilized only once, even if this
necessitates duplicating variables. Automatic differentiation,
the main computational technique for calculating function
derivatives, has significantly facilitated the emergence
of deep learning techniques by automatically computing
gradients for custom-designed models, similar to how SGD
enables gradient descent on large-scale datasets. Applying
automatic differentiation to this model representation directly
decomposes the gradient as a sum of path contributions.
In summary, this paper presents two contributions. Firstly,

RAD is generalized into SPAD by allowing for alternative
probability distributions on the LCG, which reduces over-
fitting and can be interpreted as a form of dropout during
backpropagation. Secondly, a compilation-based technique
is introduced that enables automatic access to the random
paths without requiring any prior knowledge of the model
architecture. The remainder of the paper is structured
as follows. In the subsequent section, a novel gradient
estimator, Selective Path Automatic Differentiation (SPAD), is
introduced. This estimator extends RAD beyond the uniform
distribution and a technique for applying it to general models
without any prior knowledge of their structure is presented.
The third section presents the results from experiments
conducted on various objective functions. The paper concludes
with a discussion on the novel direction of stochasticity
prompted by this work and its similarities with dropout.

II. BEYOND UNIFORM DISTRIBUTION AND MATRIX
INJECTION
A. BEYOND UNIFORM DISTRIBUTION: DISTRIBUTION
PROBABILITY GENERALIZATION
Thanks to Equation 1, the gradient is decomposed as a sum
of all the path contributions. This decomposition can be

VOLUME 11, 2023 136553



P. Peseux et al.: SPAD: Beyond Uniform Distribution on Backpropagation Dropout

generalized as Equation 2, regardless of the provenance of
each term of the sum.

∇θ f =
∑
i=1..N

gθ,i. (2)

The formulation will be adhered to, where each gθ,i is
related to a specific backpropagation path, even though all
the following applies to optimization problems where the
objective function is expressed as a sum, given the linearity
of the derivative operator.

In addition to memory consumption reduction, it might help
the optimization process by avoiding local minima. In gradient
descent a local minimum gives a zero gradient that might
slow or even stuck the minimization of the objective function.
However the gradient being equal to zero does not mean that
all the gθ,i are zero. Using one of them might help to avoid this
unwanted scenario. An example is given on a toy function:
Example 1: Let’s consider the function f1 : R → R:

f1(x) = x2(2+ cos(4x)).

FIGURE 2. Representation of f1(x) = x2(2 + cos(4x)). This function has an
infinite number of local minima, but its general trend follows x2.

This function is chosen because it presents multiple local
minima. The decomposition of the derivative of f1 following
the backpropagation paths of its LCG is given in Equation 3.

∂f1
∂x
= 2 x(2+ cos(4x))− 4x2 sin(4x) = gx,1 + gx,2 (3)

If one employs the true gradient of f1 and applies gradient
descent with standard optimizers, it will undoubtedly become
trapped in a local minimum. However, if one opts to utilize
the first component of the gradient, it will reach the global
minimum of f1 at x = 0. This claim is supported by Figure 3.
This example underscores the usefulness of approaches

based on code stochasticity. Although the impact is minimal
on a function such as f1, it is evident that computing only a
fraction of the terms in the gradient sum reduces resource
consumption, particularly memory.

The RAD approach utilizes a uniform distribution across all
possible paths. However, it is suggested that not all gradient
paths are equally important at any given time. Therefore,

FIGURE 3. Minimization of f1 through SGD with Adam [9] and its default
values as optimizer. The starting point is x = 5. The blue curve represents
the use of the full gradient from equation 3, which gets trapped in a local
minimum. In contrast, the red curve represents the random selection of
gradient terms during iterations, which allows for the avoidance of local
minima and leads to a decrease in the target function. The green and
black-dashed curves correspond to the static selection of one component
of the gradient, gx,1 and gx,2 respectively.

a non-uniform distribution with varying probabilities to draw
a gθ,i is aimed to be utilized during gradient descent. Let
It ∼ (ptθ,1, . . . , p

t
θ,N ) be defined as the probability to draw

gθ,i to compute gradient descent, defined over the T ∈ N
epochs. For notational simplicity, θ is omitted, which gives:
It ∼ (pt1, . . . , p

t
N ). It follows that:

∀t ≤ T
N∑
i=1

pti = 1.

The intuition tells that locally, there is an optimal probability
distribution that would decrease faster the objective function fθ .
There is no reason that this distribution is uniform. Supporting
this intuition, it is argued that that certain gθ t ,i may be
negligible compared to others at a specific stage of the
optimization process, i.e. at a specific iteration t . Drawing such
gθ t ,i would have an almost negligible impact on minimizing
the objective function. As a result, resources would be better
utilized by computing the gθ t ,i that significantly reduces
the target function. However, the magnitude of the gθ t ,i
depends on the position of the parameter thetat in the search
space; therefore, the probability distribution should be updated
alongside the iterations.

One of the consequences of such non-uniform distribution
over the gθ,i is the construction of a gradient estimator that
may be biased. This is problematic as many convergence
guarantees [5] rely on the unbiasedness of the gradient
estimator. To address this issue, two key points are presented.
First, the probability distribution It varies during the iterations
of the learning process. The similarity between a gθ,i and
the exact gradient is not constant over the search space of
θ . Therefore, the objective is to continuously update the
probability associated with the terms of the gradient sum.
Using the uniform distribution gives an unbiased estimator
which gives convergence guarantees, so a proper update rule
will smooth the probability associated to a backpropagation

path gθ,i over the iterations, i.e 1
T

T∑
t=1
pti will tend toward 1

N .

In that case, the estimator becomes unbiased over the iterations.

136554 VOLUME 11, 2023



P. Peseux et al.: SPAD: Beyond Uniform Distribution on Backpropagation Dropout

Secondly, and of greater significance, a modification to the
computed gradient is proposed to guarantee the unbiasedness
of the new estimator, irrespective of the evolution of It .
Definition 1 (Normalization trick): Let’s define gI the

stochastic gradient estimator relative to It ∼ (pt1, . . . , p
t
N ):

gIt =


1
ptI
gθ,It , if ptI > 0

0, otherwise.
(4)

The corrective term 1
pti
is introduced in order to preserve the

unbiasedness of the gradient estimator, which is necessary to
rely on convergence guarantees [5]. gIt is unbiased as long as
none of the pti values are equal to zero:

∀t ≤ T E[gIt ] =
∑
i=1..N

pti ×
1
pti

E[gθ,i] = E[∇θ f ].

This normalization trick evacuates all the possible issues
about unbiasedness of a non uniform distribution over the
backpropagation paths. Let’s remember that the objective is
to constrain memory usage and prevent overfitting without
excessively lengthen training time. Consequently, seeking
the optimal term gθ,i of the gradient at every iteration is
infeasible. Inspired by multi-armed bandits [19], a heuristic is
introduced that balances the exploration of the best probability
distribution with the utilization of the one established during
exploration, also known as exploitation.

B. SELECTIVE PATH AUTOMATIC DIFFERENTIATION
The search for a good path is computationally demanding,
as finding the exact best path implies to evaluate all possible
paths. An approximation is then to draw and evaluate a subset
of path and choose the best path of these subset. But even
in this case, repeating the procedure for every iteration will
be costly. Notice that if a particular gθ,i has the highest
contribution to the gradient magnitude at a specific point
θ t , then it will also have the highest contribution in the
surrounding parameter space as SGD is an iterative method.
Hence, using this gθ,i for a few iterations seems like a
reasonable approximation. This approximation is even more
reasonable when one assumes that the difference between the
gθ,i values is independent of the batch being used. In other
words, the more the observation batch is representative of the
dataset, the better the approximation.

SPAD is a new gradient estimator dealing with the trade-off
of choosing the best component at a time and maintaining
it for the following iterations. The set of the LCG paths is
denoted as P . m random paths in the backpropagation graph,
denoted as Pm ⊂ P , are sampled, and the induced gradients
gθ,i (with i ∈ [1..m] without loss of generality) restricted
to these paths are calculated. Among these m paths and for
the next kmax iterations, the one yielding the largest gradient
imax is associated to an almost one probability with keeping
an ϵ > 0 fraction of exploration for all the other paths (not
restricted to the m ones).

The Almost-Dirac notation Dϵ
i (j) in 5 below is conveniently

introduced to represent SPAD:

∀ϵ > 0; ∀i, j ≤ N ; Dϵ
i (j) = (1− ϵ)δj=i +

ϵ

N − 1
δj ̸=i.

(5)

For a given i ≤ N , Dϵ
i can be used as probability distribution

over [1..N ] as
∑

jD
ϵ
i (j) = 1. The probability distribution of

SPAD described above is formalized by It from Equation 6.

∀t ≤ T It ∼ Dϵ
iτmax

, (6)

with iτmax = argmax
i∈Pm

∥∥gθ,i
∥∥ and t = τ + r = qkmax + r

(euclidean division).

Algorithm 1 SPAD
Require: Z (data)
Require: θ ∈ model (model parameters)
Require: epochs, iterations, kmax, m, ϵ (hyper parameters)

epoch← 0
while epoch < epochs do

k ← 0
for i ∈ iterations do

5: batch = Z[i]
do forward on batch
for θ ∈ rev(model) do

if k ≡ 0 (mod kmax) then
draw m random paths

10: imax = argmax
j≤m

∥∥gθ,j(batch)
∥∥

for j ≤ m do
pθ,j = (1− ϵ)δj=imax +

ϵ
N−1δj ̸=imax

end for
end if

15: draw I according to (pθ,1, . . . pθ,m)
update θ with 1

pθ,1
gθ,I (batch)

end for
k ← k + 1

end for
20: epoch← epoch+ 1

end while
Return: θ

SPAD pseudocode is presented in Algorithm 1 and
is particularly appealing as it avoids the need for a
complete evaluation of the gradient, which is a resource-
intensive process. Additionally, it does not require additional
memory beyond storing the m random paths and their
associated gradients. Notice that, an implementation technique,
checkpointing does not influence the gradient estimation itself,
but rather the manner in which it is obtained. Consequently,
all variations of checkpointing are compatible with SPAD.
By choosing the largest gradient among the sampled paths,
this approach has the potential to enhance the learning
process, as the target loss is expected to decrease more rapidly
compared to a uniform selection of the path. This heuristic

VOLUME 11, 2023 136555



P. Peseux et al.: SPAD: Beyond Uniform Distribution on Backpropagation Dropout

introduces two new parameters, namely m and kmax. However,
there is a tradeoff to be made as increasing m may lead to a
better gradient estimation but also slows down the learning
process. With m and kmax both set to 1, SPAD reduces to RAD.

The parameter m represents the number of gradient paths to
be selected to determine the one with the largest contribution.
It is desirable to have a large value of m in order to ensure that
the strongest contribution is well estimated. The estimation
of a maximum is always underestimated but it will not have a
strong impact on experiments thanks to quite large values of
m. The parameter kmax determines the number of consecutive
iterations that the chosen gradient path is used for. A large
value of kmax can be used if the chosen path is a good one.
During the kmax iterations, the parameters corresponding to
the unchosen paths are frozen. If kmax is set to a large value,
it makes the method similar to freezing layers presented in
[6]. If kmax is large, a large value for m is preferable to ensure
that the chosen random path is carefully selected for multiple
iterations. However, if kmax is small, a smaller m can be
tolerated since the path selection has an impact on a limited
number of iterations.
The rationale behind using different probability distri-

butions in SPAD is to find the optimal distribution that
emphasizes the most important paths for gradient propagation
at each iteration. Locally, certain paths may have a higher
impact on minimizing the objective function, and prioritizing
these paths can lead to faster convergence. By allowing
alternative probability distributions on the backpropagation
graph, SPAD adapts the distribution based on the current stage
of the learning process, which improves learning performance.
Additionally, by selectively computing the most significant
paths, SPAD reduces memory consumption compared to
evaluating all paths.
SPAD is an intermediate solution between RAD that

does not try to determine the optimal choice of distribution
and optimizations schemes that would need to duplicate
the memory for the parameters, which would eliminate the
benefits of SPAD. The implementation of SPAD through code
stochasticity based on automatic differentiation, irrespective
of the shape of the model to optimize, will be demonstrated
in the following section. This contrasts with the RAD
implementation, which, being based on matrix injections, was
only compatible with neural networks.

C. FROM COMPILATION TO RANDOM PATHS:
IMPLEMENTATION GENERALIZATION
The implementation of SPAD requires a computational method
to obtain the terms of the gradient from Equation 1 written
as a sum. This translates into identifying the backpropagation
paths within the graph. Given the orientation of the LCG,
identifying forward paths or backpropagation paths equates to
the same problem. In a general context, without making any
assumptions about the form of the LCG, an alternative method
for executing this task is proposed on any language suited

for automatic differentiation that satisfies the Static Single
Assignment (SSA) and Single Access (SA) properties.

FIGURE 4. SA-LCG of f2(x, y ) = ex (x + y ). The node x is a tupling node.

Definition 2 (SSA): Static Single Assignment (SSA) form
is a property of a lower-level representation of a program that
mandates each variable to be assigned precisely once, with
every variable being defined before its use.
Definition 3 (SA): Single Access (SA) form is a property

of a lower-level representation of a program which mandates
that every variable is read at most once.
An example of such programming language crafted for

automatic differentiation, satisfying both of these properties
can be found in [14]. Moreover it is a simple operation to
turn an SSA differentiable language like [11] and [20] into a
SSA-SA one.

Due to the SA property, the LCG of a program will contain
tupling nodes, as highlighted in Example 2. They make
possible the construction of program using a variable multiple
times by duplicating it. With the exception of these tupling
nodes, there is only one edge that exits a node, which is a strict
translation of the SA property on the LCG. Consequently,
choosing a contribution to the gradient from Equation 1
involves following the path from a parameter node to the
output node and selecting one of the edges emanating from
the encountered tupling nodes.
Example 2: Let’s consider the function f2(x, y) = ex×(x+

y). To satisfy the Single Access (SA) property, since x is utilized
twice in the program, its node is tupled, resulting in the LCG
(and the corresponding program) as depicted in Figure 4 (5,
respectively):

FIGURE 5. SSA-SA version of the program relative to f2.

The tupling of variables in order to fulfill the SA property
results in the gradient being expressed as a sum as proved in
Equations 7. This is a key aspect of reverse mode automatic

136556 VOLUME 11, 2023



P. Peseux et al.: SPAD: Beyond Uniform Distribution on Backpropagation Dropout

differentiation, also known as backpropagation. It is given by
letting x be a parameter of f tupled in N variables {xi}i=1..N ,
Equation 1 turns into:

∂f
∂x
=

∑
x−→z

5
zk−→zl

∂zl
∂zk

=

N∑
i=1

∂xi
∂x

∑
xi−→z

5
z′k−→z′l

∂zl′

∂zk ′

=

N∑
i=1

1.
∂f
∂xi
=

N∑
i=1

∂f
∂xi

. (7)

The chain rule of differentiation in reverse yields x̄ =
∂f
∂x called the adjoint of x, which is the desired output.
Figure 6 highlights how the SSA-SA property directly gives
the gradient as a sum.

FIGURE 6. (Top) Generic non SA LCG, with x being used three different
times. The dashed lines represent backpropagation. g, h and k are arbitrary
differentiable functions. (Left) SSA version of the derivative program.
(Right) SSA-SA version of the derivative program.

As previously framed, SPAD can be conceptualized as a
form of dropout during backpropagation. By implementing
SPAD independently of any specific model architecture,
a generalized form of dropout can be introduced to a wider
range of machine learning models. While dropout is a viable
technique for deep learning models comprising numerous
parameters without distinct significance for each individual
one, it may not be suitable for smaller models.
The two approaches to obtain the gradient expressed as a

sum, matrix injection or differentiation of SSA-SA languages,
both rely on the multiple use of the parameters in the model
implementation. If there is one and only one path from the
parameter to the output node of the LCG, SPAD is pointless.

Hopefully, this does not happen in many cases, as presented
in the experiments Section III.

III. EXPERIMENTS
Experiments were conducted on two different types of tasks.
Firstly, our novel gradient estimator was applied to a set
of functions commonly used for evaluating optimization
algorithms. These functions are not well-suited for gradient
descent due to their numerous local minima. However, SPAD
may overcome this issue by following gradient estimations
rather than relying on the exact gradient. Evaluating SPAD on
these functions provides further validation of its usefulness
beyond the domain of neural networks. The emphasis in
these functions lies on the terminal point of the optimization,
whether it is in the proximity or not to the globally optimal
solution that is known beforehand. Secondly, the estimator was
tested1 on the MNIST and CIFAR10 datasets using standard
deep architectures to compare our method to existing ones.
In order to assess the different approach, the considerations
are placed on the accuracy achieved on the test data as well
as the maximum memory utilization observed during the
training process. These experiments vary significantly in
several aspects. Firstly, the data varies greatly, as the first
search space is 2-dimensional, while our dense architecture
for MNIST, as presented in IV-D, has over 410k parameters.
Additionally, the minimum of the optimization functions
is known, which is not the case for neural networks. The
diversity of these tasks provides a deeper understanding of the
implications of the proposed method.
Remember that the theoretical probability distribution

given by SPAD is an Almost-Dirac on the largest gradient
contribution. In practice, the exact estimator gI is not utilized.
Instead, the largest gradient contribution is selected for
kmax iterations, resulting in the simplified estimator gθ,I .
It removes the necessity of a random draw at each iteration
for choosing the backpropagation path. Consequently a proper
implementation of this version requires the storage of only
two random paths as our goal is not to sort the gradient norms,
but rather to find the argmax. Therefore, the memory usage
is independent of the value of m. This alternative version of
SPAD is depicted in Algorithm 2.

A. OPTIMIZATION FUNCTIONS
The performance of the methods is evaluated on four
optimization functions, employing the ϵ-success rate from
Definition 4. This metric quantifies the ratio of optimizations
with varying initializations that terminate at an ϵ value equal
to or less than the known global minimum for the specified
function.
Definition 4 (ϵ-success): XT ∈ Z is an ϵ-success for the

minimization of f if and only if f (XT )− argmin
X∈Z

f (X ) < ϵ.

Experiments are conducted using three different setups.
The baseline method, SGD with the classical full gradient

1https://github.com/ppmdatix/RandomizedAutomaticDifferentiation
which is a fork from RAD.

VOLUME 11, 2023 136557



P. Peseux et al.: SPAD: Beyond Uniform Distribution on Backpropagation Dropout

estimator, is compared against RAD and SPAD. The functions
utilized for evaluation, described in IV-B, have a confirmed
minimum, thus enabling the definition of the ϵ-success.
These functions, being incapable of representation as neural
networks, are run on Envision, Lokad’s domain specific
language, where the random paths are extracted from the
differentiation of the SSA-SA form of the language. Given
that dropping out one of the few parameters of these functions
is deemed insignificant, 1000 experiments are performed for
each configuration using Adam [9] as the optimizer with its
default values (learning rate of 0.01, β1 = 0.9 β2 = 0.999)
over T = 2000 epochs. Tests were carried out for kmax =

5 and kmax = 50, and the ϵ-success rate is reported in Table 1.
(and 2. respectively) for ϵ = 0.05 (ϵ = 0.01 respectively).
Multiple values of m were not tested due to the parameter’s
dependency on the function in use. A single branch from
each tupling node in the backpropagation graph execution
was selected. For instance, in function f1 from Example 2,
when the input x is utilized twice in the function, m is set
to 2. Furthermore, owing to the nature of the minimization
objective, the construction of a validation set is infeasible.

TABLE 1. ϵ-success table with ϵ = 0.05. In bold, the method with the
higher ϵ-success rate for the corresponding function.

TABLE 2. ϵ-success table with ϵ = 0.01. In bold, the method with the
higher ϵ-success rate for the corresponding function. All the ϵ-success rate
are lower than in Table 1 as ϵ is smaller.

Although gradient methods are not particularly suited for
these functions, better results are observed with SPAD when
the gradient expression is particularly suitable in the form of a
sum, as seen in the Beale function. In more challenging cases,
such as the Levi function, the baseline never manages to find
a minimum, whereas using SPAD allows, albeit in a limited
number of cases, to find the minimum.

The ϵ-success rate for varying values of kmax on the Beale
and Levi functions is presented in Figure 7. On these examples
the proposed method SPAD (with the appropriate kmax)
outperforms the baseline and RAD, which is very promising.

It also demonstrates that there is no universal optimal value
of kmax, as the performance seems increasing with kmax on the
Beale function but decreases on the Levi function.
The choices made to conduct these experiments are

motivated by two observations. Firstly, The choice of the

functions in this section is motivated by the fact that they
employ several times their input variables. As highlighted in
Section II-C, it is necessary to use SPAD. Secondly, although
SPAD is promoted as a way to reduce overfitting, this concept
is not relevant in optimization problems where the goal is
to find the optimal parameters that maximize the objective
function, without considering factors such as the model’s
generalization capabilities.

B. DEEP LEARNING
Experiments were conducted on the MNIST and CIFAR10
datasets, comparing SPAD with the standard stochastic
gradient estimator (baseline), RAD and the dropout technique.
The experimental framework described in [12] was employed,
which does not involve early stopping to prevent increased
memory requirements. However, this framework may result
in overfitting, which is intended to be mitigated. This explains
why dropout runs were made, to be able to compare with a
method that is designed to mitigate overfitting.

The objective of our approach is to preserve learning quality
while reducing the memory peak in comparison to traditional
SGD.

Due to the substantial number of parameters in the utilized
networks, drawing a single path in the backpropagation graph
would lead to negligible updates. Instead, considering the
fraction of the path to be drawn, experiments were conducted
wherein 10% of the network was updated at each iteration.
To elaborate, m sets of random paths were drawn, with each
set covering 10% of the network. In contrast, the theoretical
implementation of SPAD generates m random paths, with
each path covering 1

N% of the model. The same proportion
(i.e., 10%) was applied during dropout runs. Our practical
implementation of SPAD is described in Appendix IV-C.
The two metrics aimed to be optimized, namely the final

accuracy on the testing dataset and the memory peak in
percentage required during training, are depicted in Figure 8.
The objective is to get the higher accuracy on testing with the
lowest memory consumption, i.e. ending in the green zone.
On these examples, the many variants of SPAD are competitive
with the baseline and RAD, and it achieves strictly superior
results on CIFAR10. In this context, seeking hyperparameters
unrelated to SPAD is irrelevant. This explains why a validation
set is dispensable, and assessing methods on the test dataset
alone suffices. Note that all the runs share the same neural
architectures, which is a fully connected network on MNIST
and a convolutional one on CIFAR10. More details are given
in IV-D.
Concerning overfitting, detailed results on the CIFAR10

dataset are presented in Figure 9, while more details on the
MNIST dataset are given in the appendices. They tend to
confirm that our method effectively reduces it compared to
the baseline. While the training loss of the baseline quickly
decreases during the first iterations, its test loss quickly
increases. On the contrary, SPAD slowly decreases its loss
on the training dataset and its testing loss increases slowly
compared to the baseline. This observation highlights the

136558 VOLUME 11, 2023



P. Peseux et al.: SPAD: Beyond Uniform Distribution on Backpropagation Dropout

FIGURE 7. ϵ-success as a function of kmax. On these graphs, the higher the better. Both experiments show an impact of kmax on the ϵ-success of the
gradient descent. On Figure 7a on the beale function, a bigger kmax upgrades the optimization while it is the opposite on Figure 7b and the levi
function. In both cases, the better results are obtained with a version of SPAD that outperforms the baseline and RAD.

FIGURE 8. Accuracy on test versus memory peak tradeoff. The displayed memory is a fraction of the biggest memory peak of the baseline, the same is
used for every run. The objective is to achieve the highest accuracy while minimizing memory usage. A run is considered as strictly better than another
if it reaches higher accuracy with less memory. Otherwise one cannot rank two runs. The superior results are located in the upper left quadrant of the
graph, indicated by the green color. With regards to the MNIST dataset, as shown in Figure 8a, none of the methods outperform the baseline, although
the differences are minimal, as every model achieves over 97% accuracy. The least accurate results occur when kmax = 1000. This outcome is
reasonable since the selected paths may be utilized for an excessive number of iterations and might lose relevance at a specific stage. On 8b which
concerns the CIFAR10 dataset, some versions of SPAD like (kmax = m = 10) are strictly better than the baseline.

similarities between the process of randomly drawing paths
during backpropagation and the dropout technique. Turning off
a fraction of the network, on the forward pass for dropout and
on the backpropagation for SPAD, tends to reduce overfitting.
The dropout runs attain the highest test accuracy with

significant memory consumption. This approach effectively
mitigates overfitting, as the testing loss increases at a much
slower rate compared to other heuristics in Figures 11 and 12
from the appendices. Incorporating random matrix injections
could prove highly beneficial for such learning techniques.
The primary objective of SPAD is to minimize memory

consumption. From the perspective of a fixed memory budget,
employing SPAD liberates resources that can be reallocated
to increase the batch size, for instance. This hypothesis was
evaluated by employing the SPAD method, utilizing a batch

size twice as large as that in the other experiments, denoted as
big batch in the legend of Figure 8b.While this approach led to
increased memory consumption, it also resulted in heightened
overfitting, exhibiting behavior akin to the baseline in both
training and testing data sets. This observation is consistent
with the findings of [8], which assert that large batch training
methods are more prone to overfitting compared to the same
network trained using smaller batch sizes.

IV. CONCLUSION AND PERSPECTIVES
From the perspective of deep learning, SPAD can be regarded
as a combination of dropout and layer freezing within a neural
network. By drawing backpropagation paths, SPAD proposes
a similar technique to dropout for any gradient based model.

VOLUME 11, 2023 136559



P. Peseux et al.: SPAD: Beyond Uniform Distribution on Backpropagation Dropout

FIGURE 9. Learning curves of the SmallConvNet on CIFAR10. The baseline model exhibits rapid performance
improvement on the training dataset, while its performance on the testing dataset deteriorates just as
quickly. This behavior is characteristic of overfitting, whereas the various versions of SPAD effectively
mitigate this undesired decrease in generalization. The upper right plot suggests a continuum ranging from
mild overfitting (dropout) to severe overfitting (baseline and SPAD with large batches).

It is based on reverse mode automatic differentiation of SSA-
SA languages.
Currently, the most significant limitation is the lack of an

efficient implementation of the method to reduce memory
consumption in deep learning applications. Further efforts are
needed to properly code this method to enable an efficient
implementation of the method in real-world environments,
maximizing its benefits in terms of memory reduction in
embedded artificial intelligence models. Another limitation
is the lack of an appropriate heuristic or algorithm to
determine the optimal parameter values for SPAD. Finding
efficient parameter values that strike a balance between
memory reduction and learning performance remains a
challenge. Additionally, the effectiveness of SPAD may vary
depending on the specific model architectures and datasets
used, so generalizability across different scenarios would need
to be investigated.
Overall the main idea is to draw more frequent examples

that have a bigger impact on the lossminimization. Concerning
this code’s stochasticity, the result shows the advantages of
a non uniform probability distribution. This is aligned with
multiple works [3], [10] that use non-uniform distributions on
the observations and outperforms the uniform one.

Table 3 summarizes the construction of gradient stochastic-
ity based on the chosen stochasticity. The sampling process

can be conducted at the observation or code level, with uniform
or non-uniform distribution.

TABLE 3. Small review of the stochasticity origin of gradient estimators.

An interesting future work would be about non-uniform
distributions on the observations and on the code, which could
hopefully get better learning results without increasing the
training memory needs. Such direction would help parameters
updates on embedded artificial intelligence, which would open
many industrial applications, like embedded machine learning
on devices with constrained computational resources.

APPENDIX A
SPAD IMPLEMENTATION
A. SPAD IN PRACTICE
See Algorithm 2.

B. OTHER HEURISTICS
We have tested other probability distribution construction over
the gθ,i like

It ∼ Dϵ
sqkmax

with st = argmin
p∈Pm

∥∥∇fθ − gθ,p
∥∥ (8)

136560 VOLUME 11, 2023



P. Peseux et al.: SPAD: Beyond Uniform Distribution on Backpropagation Dropout

Algorithm 2 SPAD in practice
Require: Z (data)
Require: θ ∈ model (model parameters)
Require: epochs, iterations, kmax, m, ϵ (hyper parameters)

epoch← 0
while epoch < epochs do

k ← 0
for i ∈ iterations do

5: batch = Z[i]
do forward on batch
for θ ∈ rev(model) do

if k ≡ 0 (mod kmax) then
draw m random paths

10: imax = argmax
j≤m

∥∥gθ,j(batch)
∥∥

end if
update θ with 1

pθ,1
gθ,imax (batch)

end for
k ← k + 1

15: end for
epoch← epoch+ 1

end while
Return: θ

Nevertheless, none of the other tested methods yielded
superior results compared to SPAD. Furthermore, SPAD
exhibits the lowest memory consumption, as it eliminates
the need to compute the full gradient even once, in contrast to
the heuristic presented in Equation 8.

APPENDIX B
OPTIMIZATION FUNCTIONS
Ackley

ackley(x, y) =− 20 exp
[
−0.2

√
0.5

(
x2 + y2

)]
× exp [0.5 (cos 2πx + cos 2πy)]+ e+ 20

Beale

beale(x, y) = (1.5−x + xy)2

+

(
2.25−x + xy2

)2
+

(
2.625− x + xy3

)2
Levi

levi(x, y) = sin2(3πx)

+ (x − 1)2
(
1+ sin2 3πy

)
+ (y− 1)2

(
1+ sin2 2πy

)
Schaffer2

schaffer2(x, y) = 0.5+
sin2

(
x2 − y2

)
− 0.5[

1+ 0.001
(
x2 + y2

)]2

APPENDIX C
DEEP LEARNING
C. IMPLEMENTATION TRICK
The following paragraph is Pytorch-specific. The deep
learning experiments were performed using Pytorch [13]. The
main challenge was persisting tensors from the backward pass
to the forward pass. The random paths implemented by the
random matrix injection P needs to be persisted for multiple
iterations. But they are chosen during the gradient calculation
in the backward pass. Although intermediate tensors can be
saved using the save_for_backward2 function, there is no
similar function for saving tensors from the forward pass to the
backward pass. To address this issue, we passP as a ghost input
to the forward pass, manually updated its version in each of
the kmax iterations into the corresponding gradient, and finally
replaced P with the value artificially stored in its gradient.
More detailed can be found in the released implementation.

Moreover, as presented by RAD, the practical implementa-
tion of the random matrix injections is not optimal. To get a
fair comparison, the baseline is computed with identity matrix
injection, which does not change anything to the final accuracy
but makes the memory result comparable.

D. EXPERIMENTS
For consistence of comparison with RAD [12] results, the
same methodology has been used

The fully-connected architecture on MNIST consists of:
1) Input: 784-dimensional flattened Image
2) Linear layer with 300 neurons (+ bias) (+ ReLU)
3) Linear layer with 300 neurons (+ bias) (+ ReLU)
4) Linear layer with 300 neurons (+ bias) (+ ReLU)
5) Linear layer with 10 neurons (+ bias) (+ softmax)

The convolutional architecture on CIFAR consists of:
1) Input: 3 × 32 × 32-dimensional Image
2) 5×5 convolutional layer with 16 feature maps (+ 2 zero-

padding) (+ bias) (+ ReLU)
3) 5×5 convolutional layer with 32 feature maps (+ 2 zero-

padding) (+ bias) (+ ReLU)
4) 2× 2 average pool 2-d
5) 5×5 convolutional layer with 32 feature maps (+ 2 zero-

padding) (+ bias) (+ ReLU)
6) 5×5 convolutional layer with 32 feature maps (+ 2 zero-

padding) (+ bias) (+ ReLU)
7) 2× 2 average pool 2-d (+ flatten)
8) Linear layer with 10 neurons (+ bias) (+ softmax)
The MNIST models were trained using gradient descent

with a fixed mini-batch size of 150 for 20,000 iterations with
the learning rate 5.27.10−4 multiplied by 0.6 every 10% of
the iterations. These hyperparameters were used throughout
the training process and were not modified.
Similarly, the CIFAR-10 models were trained for 100,000

iterations using gradient descent with a fixed mini-batch size.
The learning rate was reduced by 0.6 every 10,000 iterations,
and we used the Adam optimizer.

2torch.autograd .function.FunctionCtx.save_for_backward

VOLUME 11, 2023 136561



P. Peseux et al.: SPAD: Beyond Uniform Distribution on Backpropagation Dropout

FIGURE 10. ϵ-success in function of kmax . see Figure 8 for more context.

FIGURE 11. Full train/test curves and memory consumption per iteration on MNIST.

136562 VOLUME 11, 2023



P. Peseux et al.: SPAD: Beyond Uniform Distribution on Backpropagation Dropout

FIGURE 12. Full train/test curves and memory consumption per iteration on CIFAR10.

Data augmentation was not used, but the images were
centered.
For each experiment reported in the main text, we tuned

the initial learning rate and weight decay parameters for the
feedforward networks. We generated 20 pairs of weight decay
and learning rate values from specific distribution ranges.
To ensure consistent results, each experiment was trained

five times using separate bootstrapped resamplings of the full
training dataset (50,000 for CIFAR-10 and 60,000 forMNIST).
Themodels were evaluated on the test dataset (10,000 for both).
The repetition of these experiments were used to create the
memory versus test accuracy plots.
On the MNIST dataset, the dropout backpropagation

techniques perform slightly worse than the baseline and
dropout. We do not observe any overfitting in this task,
as shown in Figure 11, where the test accuracy does not
decrease over the iterations even though this data is never
used for updating the parameters. In contrast, on the CIFAR10
dataset (Figure 12), we observe that while training accuracies
consistently increase, the test accuracies tend to decrease
at some point for many techniques. This is especially
true for the baseline, but not for the dropout technique.
Dropout backpropagation techniques help mitigate overfitting,
as notably highlighted by the evolution of the testing loss.

Different versions of SPAD provide an interesting range
between the baseline and dropout performance.

REFERENCES
[1] T. Chen, B. Xu, C. Zhang, and C. Guestrin, ‘‘Training deep nets with

sublinear memory cost,’’ 2016, arXiv:1604.06174.
[2] Y. Chen, B. Zheng, Z. Zhang, Q. Wang, C. Shen, and Q. Zhang, ‘‘Deep

learning on mobile and embedded devices: State-of-the-art, challenges,
and future directions,’’ ACM Comput. Surv., vol. 53, no. 4, pp. 1–37,
Aug. 2020.

[3] D. Csiba and P. Richtárik, ‘‘Importance sampling for minibatches,’’ J. Mach.
Learn. Res., vol. 19, no. 1, pp. 962–982, Feb. 2016.

[4] M. Cunneen, M. Mullins, and F. Murphy, ‘‘Autonomous vehicles and
embedded artificial intelligence: The challenges of framing machine driving
decisions,’’ Appl. Artif. Intell., vol. 33, no. 8, pp. 706–731, Jul. 2019.

[5] A. Defossez, L. Bottou, F. Bach, and N. Usunier, ‘‘On the convergence of
adam and adagrad,’’ Mar. 2020, arXiv:2003.02395.

[6] K. Goutam, S. Balasubramanian, D. Gera, and R. R. Sarma, ‘‘LayerOut:
Freezing layers in deep neural networks,’’ Social Netw. Comput. Sci., vol. 1,
no. 5, p. 295, Sep. 2020.

[7] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, ‘‘Improving neural networks by preventing co-
adaptation of feature detectors,’’ Jul. 2012, arXiv:1207.0580.

[8] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang,
‘‘On large-batch training for deep learning: Generalization gap and sharp
minima,’’ in Proc. 5th Int. Conf. Learn. Represent. (ICLR), Toulon, France,
Apr. 2017.

[9] D. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ in
Proc. Int. Conf. Learn. Represent., Dec. 2014.

VOLUME 11, 2023 136563



P. Peseux et al.: SPAD: Beyond Uniform Distribution on Backpropagation Dropout

[10] R. Liu, T. Wu, and B. Mozafari, ‘‘Adam with bandit sampling for deep
learning,’’ in Proc. Annu. Conf. Neural Inf. Process. Syst. (NIPS), Dec. 2020.

[11] W. Moses and V. Churavy, ‘‘Instead of rewriting foreign code for machine
learning, automatically synthesize fast gradients,’’ in Advances in Neural
Information Processing Systems, vol. 33, H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds., 2020, pp. 12472–12485.

[12] D. Oktay, N. McGreivy, J. Aduol, A. Beatson, and R. P. Adams,
‘‘Randomized automatic differentiation,’’ 2020, arXiv:2007.10412.

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang,
J. Bai, and S. Chintala, ‘‘PyTorch: An imperative style, high-performance
deep learning library,’’ in Proc. NIPS, 2019, pp. 8024–8035.

[14] P. Peseux, ‘‘Differentiating relational queries,’’ in Proc. PhD@VLDB, 2021.
[15] L. Ravaglia, M. Rusci, A. Capotondi, F. Conti, L. Pellegrini, V. Lomonaco,

D. Maltoni, and L. Benini, ‘‘Memory-latency-accuracy trade-offs for
continual learning on a RISC-V extreme-edge node,’’ in Proc. IEEE
Workshop Signal Process. Syst. (SiPS), Oct. 2020, pp. 1–6.

[16] H. Robbins and S. Monro, ‘‘A stochastic approximation method,’’ Ann.
Math. Statist., vol. 22, no. 3, pp. 400–407, 1951.

[17] S. Salman and X. Liu, ‘‘Overfitting mechanism and avoidance in deep
neural networks,’’ 2019, arXiv:1901.06566.

[18] P. Teikari, R. P. Najjar, L. Schmetterer, and D. Milea, ‘‘Embedded
deep learning in ophthalmology: Making ophthalmic imaging smarter,’’
Therapeutic Adv. Ophthalmol., vol. 11, Jan. 2019.

[19] W. R. Thompson, ‘‘On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples,’’ Biometrika, vol. 25, nos. 3–
4, p. 285, Dec. 1933.

[20] B. van Merrienboer, O. Breuleux, A. Bergeron, and P. Lamblin, ‘‘Automatic
differentiation in ML: Where we are and where we should be going,’’ in
Advances in Neural Information Processing Systems, vol. 31, S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
Eds. Red Hook, NY, USA: Curran Associates, 2018.

[21] Y. M. Volin and G. M. Ostrovskii, ‘‘Automatic computation of derivatives
with the use of the multilevel differentiating technique—1. Algorithmic
basis,’’ Comput. Math. With Appl., vol. 11, no. 11, pp. 1099–1114,
Nov. 1985.

[22] R. E. Wengert, ‘‘A simple automatic derivative evaluation program,’’
Commun. ACM, vol. 7, no. 8, pp. 463–464, Aug. 1964.

PAUL PESEUX received the master’s degree in
mathematics and computer science from ENS
Lyon and the degree from the Engineering School
Centrale Lyon. He is currently pursuing the
Ph.D. degree in collaboration with the Laboratoire
d’Informatique, du Traitement de l’Information
et des Systèmes (LITIS) EA4108 and Lokad,
focusing on large-scale differentiable programming
on relational data. He has experience in anomaly
detection and game theory research. His research

interests include machine learning, big data analytics, and applied
mathematics.

MAXIME BERAR received the Ph.D. degree in
signal processing from the Polytechnic Institute
of Grenoble, in 2007. Since 2009, he has been an
Assistant Professor with the Department of Physics,
University of Rouen Normandie. His research
interests include machine learning and signal
processing with applications to brain–computer
interfaces and audio applications.

THIERRY PAQUET received the master’s degree
in multimedia information processing with the
University of Rouen Normandie, in 2012. In 2002,
he was appointed as a Professor with the University
of Rouen Normandie. He was also the Head of
the Laboratoire d’Informatique, du Traitement de
l’Information et des Systèmes (LITIS), the research
laboratory in computer science, associated with
the University of Rouen Normandie, Le Havre
Normandy University, and the Rouen INSA School

of Engineering. He has published more than 100 papers in international
conferences and scientific journals. He contributed to many collaborative
projects with academic or industrial partners. His research interests include
machine learning, statistical pattern recognition, and deep learning, for
sequence modeling, with application to document image analysis and
handwriting recognition. He has supervised 20 Ph.D. students on these topics.
From 2008 to 2016, he was a member of the governing board of the French
Association for Pattern Recognition AFRIF. He was the President of the
French Association Research Group on Document Analysis and Written
Communication (GRCE), from 2002 to 2010. He is regularly invited as a
reviewer in main international conferences and scientific journals.

VICTOR NICOLLET received the degree from
École Normale Supérieure, Paris, in 2009, with
a specialty in programming language semantics
and static analysis. Since 2014, he has been the
Chief Technical Officer of Lokad, where he leads
all research initiatives related to programming
languages and compiler design.

136564 VOLUME 11, 2023


